

Monthly Progressive Test (Solution)

Class: XII

A cademic
Excellence
Programme
TECHNO ACE

Subject: PCMB

Physics

As
$$E \propto \frac{1}{r}$$

2. A

Q_{net} enclosed is zero

3. ©

$$\tau = PE \sin \theta$$

$$4 = (q)(2/100) \times 2 \times 10^5 \times \frac{1}{2}$$

$$2 = q \times 10^3$$

$$q = 2 \text{ mC}$$

4. B

$$A \rightarrow True;$$

$$B \rightarrow True$$

But reason is not the correct explanation of Assertion

5. ©

As variation of E is

6. D

As $\vdash d - \vdash$

As
$$E = -\frac{dV}{dr}$$

8. D

As
$$B \propto r$$
 $r \leq R$

$$B \propto \frac{1}{r}$$
 $r > R$

As
$$A \bullet \longrightarrow G \longrightarrow R(k\Omega)$$
Voltmeter

$$\frac{1}{2}mv^2 = qv$$

$$r = \frac{mv}{qB} = \frac{m}{qB} \sqrt{\frac{2qv}{m}}$$

$$r \propto \sqrt{v} \implies 2r = \sqrt{4v}$$

11. ©

As $i \propto A \cdot v_d$

if $A(\downarrow)$ then $v_d(\uparrow)$

So, Reason is wrong

12. [©]

Area =
$$\frac{1}{2} \times 5 \times 5 + 5 \times 5 = 12.5 + 25 = 37.5 \text{ C}$$

13. ©

Magnetic field inside paramagnetic is denser.

For diamagnetic it in just opposite.

14. B

$$\begin{split} B = & \frac{\mu_0}{4\pi} \cdot \frac{2M}{r^3} = \frac{\mu_0}{4\pi} (2) \frac{2 \cdot \pi a^2 \cdot 2l(n)i}{r^3} \\ = & \frac{\mu_0}{2} (2) \frac{nla^2}{r^3} \cdot i = \frac{(\mu_0 ni)la^2}{r^3} \end{split}$$

When temperature rises above Curie point ferromagnetic becomes paramagnetic.

16. **(A**

Magnetic susceptibility of diamagnetic is negative and small.

$$E_0 = WBAN = 60 \times 0.8 \times 0.5 \times 100 = 2400 \text{ Volt}$$

$$i_0 = \frac{2400}{100} = 24 \text{ A}$$

$$E_0 \cdot i_0 = \frac{1}{2} \times 2400 \times 24 = 57600 = 5.76 \times 10^4$$
 watt

18. A

$$v_{avg} = \frac{2v_0}{\pi} = (0.637)v_0$$

19. B

$$M = \frac{L \cdot D}{f_0 \cdot f_e}$$
 where $D = 25$ cm

20. ©

For telescope
$$M = \frac{f_0}{f_a}$$

21. B

$$A = r_1 + r_2$$

Condition for minimum deviation $r_1 = r_2 = r$

$$\therefore A = 2r$$

22. ©

$$\beta = \frac{\lambda D}{d} = \lambda \cdot \frac{\left(\frac{D}{3}\right)}{\left(\frac{d}{3}\right)}$$

$$\beta \propto \frac{D}{d}$$

Reason statement is wrong

23. D

All the statements are correct.

24. ®

As stable daughter nucleus.

25. ®

$$E_3 = -\frac{13.6}{3^2} \text{ eV} = -\frac{13.6}{9} \text{ eV} = -1.51 \text{ eV}$$

n = 1 ground state

n = 2 1st excited state

n = 3 second excited state

$$kE = x$$

$$TE = -x$$

:.
$$PE = -2x = -3.02 \ eV$$

Chemistry

26. A

$$K = A.e^{\frac{Ea}{RT}}$$
;

∴ $\log_e K = \log_e A - \frac{Ea}{RT}$; Hence graph of $\log_e K$ vs $\frac{1}{T}$ will be linear with -ve slope and intercept on y-axis equal to $\log_e A$.

27. ^(D)

 $K = A.e^{\frac{-C}{RT}}$; Arrhenins equation. The rate constant is inversely related to activation energy. It is energy required to make it equal to threshold level and it can be grater than ΔH of the reaction.

28. ©

$$i = 2A$$
, $t = 5 \times 60 \times 60 S$

$$W = 22.2 g$$
; $A = 177$

$$\therefore w = \frac{i \times t \times E}{F} = \frac{i \times t \times \frac{A}{V}}{F}$$

$$\Rightarrow V = \frac{2 \times 5 \times 60 \times 60 \times 177}{22.2 \times 96500} = 3$$

29. B

$$AgCl \rightleftharpoons Ag^+ + Cl^-$$
; $\Lambda_{sp} = K \Omega^{-1} cm^{-1}$

$$\wedge_{sp} = \frac{K \times 1000}{C}$$
; $\wedge_{AsCl} = \wedge_{Ar}^{o} + \wedge_{Cl}^{o} = x + y$

$$(x+y) = \frac{K \times 1000}{C}$$

$$C = \frac{K \times 1000}{(x+y)}$$

$$K_{sp} = C^2 = \left(\frac{K \times 1000}{x + y}\right)^2$$

30. ®

$$CH_3COOH \rightleftharpoons CH_3COO^{\Theta} + H^{\oplus}$$

i > 1, as CH₃COOH Undergoes ionization in aqueous solution

31. ©

0.167 atm; : Na₄[Fe(CN)₆] undergoes 60% ionization

$$i = 1 + (n - 1) \alpha = 1 + (5 - 1) \alpha = 1 + 4\alpha$$

= 1 + 4(0.6)
= 3.4

$$C = 2 \times 10^{-3} M$$

$$\pi = i \times CRT$$
= (3.4) (2 × 10⁻³) (0.0823) 300
= 0.167 atm.

32. B

Boiling point decreases as the number of molecules decreases.

33. B

$$b > d > C > a$$

$$b = 0.05 \text{ M glucose}$$
 $n = 0.05$

$$d = 0.02 \text{ M KCl} \implies n = 0.04$$

$$C = 0.01 \text{ M } CaCl_2 \Rightarrow n = 0.03$$

$$a = 0.01 \text{ M} \Rightarrow n = 0.02$$

34. ®

has to optically active isomers. Meso is optically inactive

35. ®

Assertion is wrong but reason is correct.

36. A

Both assertion and reason are correct and reason is the correct explanation of assertion.

37. A

Both assertion and reason are correct and reason is the correct explanation of assertion.

38. ®

Both assertion and reason are correct but reason is not the correct explanation of assertion

39. ©

$$\begin{array}{c|c} & & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline \end{array} \begin{array}{c} \Delta \\ \hline \\ \hline \end{array} \begin{array}{c} + \\ \hline \\ \end{array} \begin{array}{c} + \\ \hline \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c} + \\ \end{array} \begin{array}{c} + \\ \end{array} \end{array} \begin{array}{c}$$

41. ®

III > I > II

→ Decreasing acidic order

42. ©

OCH₃ OH
$$+$$
 CH₃J (Anisole)

43. ®

$$\alpha$$
-H is present $\frac{1}{O}$ $OH^{(-)}$ $OH^{(-)}$

44. ®

$$\begin{array}{c|c}
O & & O \\
\hline
H_2(gas, 1atm) & \\
\hline
Pd/carboethanol & \\
\end{array}$$

45. A

$$C = CH$$

$$HO - C = CH_2$$

$$HgSO_4$$

$$H_2SO_4$$

$$(enol)$$

$$(keto)$$

$$Acetophenon$$

46. ©

Glucose does not react with NaHSO₃

47. ®

Fructose reduces Tollen's reagent due to enolisation of fructose followed by conversion to aldehyde by base.

During mutarotation of β -D-glucose in aqueous solution angle of optical rotation changes from an angle of +19.2° to a constant value of +52.5°.

49. ®

[Pt(Py)(NH₃)(Br)(Cl)] will have three geometrical isomers.

- 50. A
 - (a) XeF₂ Linear
 - (b) XeF₄ Square planar
 - (c) XeO₃ Pyramidal
 - (d) XeOF₄ Square pyramidal

Mathematics

51. ®

 $R = \{(1, 2), (1, 3), (1, 4)\}$ is not symmetric $R = \{(1, 2), (2, 1)\}$ is symmetric but not reflexive and not transitive.

52. ©

$$f(x) = x^2 + 12$$

$$f(x_1) = f(x_2)$$

$$\Rightarrow$$
 x₁² + 12 = x₂² + 12

$$\Rightarrow$$
 $x_{12} = x_{22}$

$$\Rightarrow$$
 x₁ = x₂

$$(:: x \in N)$$

 \Rightarrow f(x) is one - one (injective) function.

Codomain= N

but range is subset of N.

- \therefore f(x) is not onto function.
- \therefore f(x) is injective.
- 53. ©

$$sin^{-1} (sin6)$$
= $sin^{-1} \{ sin (2\pi + 6 - 2\pi) \}$
= $sin^{-1} \{ sin (6 - 2\pi) \}$
= $6 - 2\pi$

54. ©

$$5\cos^{-1}\left(\frac{1}{2}\right) + 7\sin^{-1}\left(\frac{-1}{2}\right)$$

$$= 5\cos^{-1}\left(\cos\frac{\pi}{3}\right) + 7\sin^{-1}\left\{\sin\left(\frac{-\pi}{6}\right)\right\}$$

$$= \frac{5\pi}{3} + 7\left(\frac{-\pi}{6}\right)$$

$$= \frac{5\pi}{3} - \frac{7\pi}{6} = \frac{10\pi - 7\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}$$

$$\begin{bmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{bmatrix}$$
 is a singular matrix.

$$\begin{vmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{vmatrix} = 0$$

$$\Rightarrow$$
 (2 + x) (5 - 2) - 3 (-5 - 2x) + 4 (1 + x) = 0

$$\Rightarrow$$
 6 + 3x + 15 + 6x + 4 + 4x = 0

$$\Rightarrow 13x + 25 = 0$$

$$\Rightarrow$$
 x = $\frac{-25}{13}$

56. ®

A is a square matrix of order 3.

$$|A| = -4$$

$$|Adj A| = |A|^{n-1} = |A|^2 = (-4)^2 = 16$$

57. ©

$$\frac{\mathrm{d}}{\mathrm{dx}} \log(\log x^5)$$

$$\frac{d}{dx}\log(\log x^5)$$

$$= \frac{1}{\log x^5} \times \frac{d}{dx}(\log x^5)$$

$$= \frac{1}{\log x^5} \times \frac{5}{x}$$

$$=\frac{5}{x\log x^5}$$

58. ®

$$x = 6 \sin^{-1}(2t), y = \frac{1}{\sqrt{1 - 4t^2}}$$

$$\frac{dx}{dt} = \frac{6}{\sqrt{1 - 4t^2}} \times 2 \qquad \frac{dy}{dt} = -\frac{1}{2} (1 - 4t^2)^{\frac{-3}{2}} \times -8t$$

$$\frac{12}{\sqrt{1-4t^2}}$$

$$= \frac{12}{\sqrt{1-4t^2}} = \frac{4t}{(1-4t^2)\sqrt{1-4t^2}}$$

$$\therefore \frac{dy}{dx} = \frac{\cancel{A}t}{(1-4t^2)\sqrt{1-4t^2}} \times \frac{\sqrt{1-4t^2}}{\cancel{12}}$$

$$=\frac{t}{3(1-4t^2)}$$

$$f(x) = \frac{\sin x^{2}}{x}, x \neq 0$$

$$= 0, x = 0$$

$$\lim_{x \to 0} f(x)$$

$$= \lim_{x \to 0} \frac{\sin x^{2}}{x}$$

$$= \lim_{x \to 0} \frac{\sin x^{2}}{x^{2}} \times x = 1 \times 0 = 0$$

$$f(0) = 0$$

$$f(0) = \lim_{x \to 0} f(x)$$

$$f(x) = \lim_{x \to 0} f(x)$$

$$\therefore$$
 f(x) is continuous at x = 0.

$$Rf'(0) = \lim_{h \to 0} \frac{f(o+h) - f(o)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{\sin h^2}{h} - 0}{h} = 1$$

$$= \lim_{h \to 0} \frac{\sin h^2}{h^2} = 1$$

Lf'(0) = lim

$$h \to 0$$
 $\frac{f(o-h) - f(o)}{-h}$
= lim
 $h \to 0$ $\frac{\sin h^2}{h^2} = 1$

$$\therefore Rf'(0) = Lf'(0)$$

$$\therefore$$
 f(x) is derivable at x = 0

$$\therefore x^2 + y^2 = 400$$

When
$$x = 12$$
, $y^2 = 400 - 144 = 256$

$$\therefore y = 16$$

$$\frac{dy}{dt} = -2ft/sec.$$

$$x^2 + y^2 = 400$$

$$\Rightarrow 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$\Rightarrow x\frac{dx}{dt} + y\frac{dy}{dt} = 0$$

$$\Rightarrow 12\frac{\mathrm{dx}}{\mathrm{dt}} + 16(-2) = 0$$

$$\Rightarrow \frac{dx}{dt} = \frac{3\cancel{2}^8}{\cancel{12}_3} = \frac{8}{3} \text{ ft/sec.}$$

Let
$$m = \tan \theta = \frac{y}{x}$$

$$\therefore \frac{dm}{dt} = \frac{d}{dt} \left(\frac{y}{x} \right) = \frac{x \frac{dy}{dt} - y \frac{dx}{dt}}{x^2}$$

$$= \frac{12(-2) - 16 \times \frac{8}{3}}{144}$$

$$= \frac{-200^{25}}{3 \times 144_{18}} = \frac{-25}{54}$$

$$f'(x) = 2x^3 + 3x^2 - 36x + 10$$

$$f'(x) = 6x^2 + 6x - 36$$

$$f'(x) = 0 \Rightarrow 6x^{2} + 6x - 36 = 0$$
$$\Rightarrow x^{2} + x - 6 = 0$$
$$\Rightarrow x = -3, 2$$

$$f''(x) = 12x + 6$$

at
$$x = -3$$
, $f''(-3) = -36 + 6 = -30 < 0$

$$\therefore$$
 f(x) is maximum at x = -3.

at
$$x = 2$$
, $f''(2) = 12 \times 2 + 6 = 30 > 0$.

$$\therefore$$
 f(x) is minimum at x = 2.

∴ Point of minimum is 2.

62. D

$$\int_{1}^{2} x^{2} \log x \, dx$$

$$= \left[\log x \times \frac{x^{3}}{3} \right]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \times \frac{x^{3}}{3} \, dx$$

$$= \frac{8}{3} \log 2 - \frac{1}{3} \int_{1}^{2} \frac{1}{x} \times \frac{x^{3}}{3} \, dx$$

$$= \frac{8}{3} \log 2 - \frac{1}{3} \left[\frac{x^{3}}{3} \right]_{1}^{2}$$

$$= \frac{8}{3} \log 2 - \frac{1}{9} [8 - 1]$$

$$= \frac{8}{3} \log 2 - \frac{7}{9}$$

$$\int 2x^3 e^{x^2} dx$$

$$= \int 2x \times x^2 e^{x^2} dx \qquad \text{Let } x^2 = t$$

$$= \int t e^t dt \qquad \therefore 2x dx = dt$$

$$= t e^t - e^t + C$$

$$= e^t (t-1) + C$$

$$= e^{x^2} (x^2 - 1) + C$$

$$x = 4$$

Area =
$$\int_{0}^{4} x \, dx + \int_{4}^{4\sqrt{2}} \sqrt{32 - x^{2} \, dx}$$

$$= \left[\frac{x^2}{2}\right]_0^4 + \left[\frac{x\sqrt{32 - x^2}}{2} + \frac{32}{2}\sin^{-1}\left(\frac{x}{4\sqrt{2}}\right)\right]_4^{4\sqrt{2}}$$

$$= 8 + 16 \times \frac{\pi}{2} - (8 + 16 \times \frac{\pi}{4})$$

$$= 8 + 8\pi - 8 - 4\pi$$

= 4π sq. units.

65. A

$$\begin{array}{ll} y = |x|-2 \;, & y = 1-|x-1| \\ y = x-2, \, x \geq 0 & y = 1-x+1, \, x \geq 1 \\ y = -x-2, \, x < 0 & = 2-x, \, x \geq 1 \\ y = 1+x-1 = x, \, x < 1 \end{array}$$

Area =
$$\int_{0}^{1} x \, dx + \int_{1}^{2} (2-x) \, dx + \left| \int_{0}^{2} (x-2) dx \right| + \left| \int_{-1}^{0} y \, dy \right| + \left| \int_{-2}^{-1} (-y-2) dy \right|$$

= $\left[\frac{x^{2}}{2} \right]_{0}^{1} + \left[2x - \frac{x^{2}}{2} \right]_{1}^{2} + \left| \frac{x^{2}}{2} - 2x \right|_{0}^{2} + \left| \frac{y^{2}}{2} \right|_{-1}^{0} + \left| \frac{-y^{2}}{2} - 2y \right|_{-2}^{-1}$
= $\frac{1}{2} + \frac{1}{2} + 2 + \frac{1}{2} + \frac{1}{2} = 4$ sq. units

$$\vec{r} = \lambda(\hat{i} + 2\hat{j} - \hat{k})$$

 \therefore equation of line is $\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$

67. (a)
$$\vec{r} = \lambda(\hat{i} + 2\hat{j} - \hat{k})$$

 $\vec{r} = 3\hat{i} + 3\hat{j} + \mu)2\hat{i} + \hat{j} + \hat{k}$

$$\vec{a}_{1} = \vec{0}, \vec{a}_{2} = 3\hat{i} + 3\hat{j}, \vec{b}_{1} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b}_{2} = 2\hat{i} + \hat{j} + \hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = 3\hat{i} + 3\hat{j}, \vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{vmatrix} = 3\hat{i} - 3\hat{j} - 3\hat{k}$$

$$\therefore \left| \vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2 \right| = \sqrt{9 + 9 + 9} = 3\sqrt{3}$$

$$(\vec{a}_2 - \vec{a}_1).(\vec{b}_1 \times \vec{b}_2) = 9 - 9 + 0 = 0$$

 \therefore S. D. = 0 unit.

68. ©

Since S. D. of two lines is zero.

$$\vec{r} = \lambda(\hat{i} + 2\hat{j} - \hat{k})$$
 and $\vec{r} = 3\hat{i} + 3\hat{j} + \mu(2\hat{i} + \hat{j} + \hat{k})$ are intersecting lines.

Any point on the first line be (t, 2t, -t)

:.
$$t\hat{i} + 2t\hat{j} - t\hat{k} = (3 + 2\mu)\hat{i} + (3 + \mu)\hat{j} + \mu\hat{k}$$

$$\Rightarrow$$
 3 + 2 μ = t

$$3 + \mu = 2t$$

$$\mu = -t$$

$$\therefore$$
 3 = 3t \Rightarrow t = 1

 \therefore Point of intersection is (1, 2, -1)

 \therefore The motorcyles will meet with an accident at (1, 2, -1).

69. A

$$P(E) = \frac{13}{52} = \frac{1}{4}, P(F) = \frac{1}{13}$$

$$P(E \cap F) = \frac{1}{52}$$

$$\therefore P(E/F) = \frac{\frac{1}{52}}{\frac{1}{13}} = \frac{1}{4} = P(E) \text{ and } P(F/E) = \frac{\frac{1}{52}}{\frac{1}{4}} = \frac{1}{13} = P(F)$$

Again,
$$P(E \cap F) = \frac{1}{4} \times \frac{1}{13} = P(E) \times P(F)$$

:. Assertion is true. Reason is also true and reason is the correct explanation of assertion (A).

70. ®

If A and B be two independent events.

$$\therefore P(A \cap B) = P(A)P(B)$$

Assertion (A) is false. But reason is correct.

71. ©

$$\frac{d^{3}y}{dx^{3}} - 3 \left(\frac{d^{2}y}{dx^{2}}\right) + 2 \left(\frac{dy}{dx}\right)^{4} + y^{3} = 0$$

 \therefore Order = 3, degree = 1.

72. ^(D)

$$\frac{dy}{dx} + 8x = 16x^{2} + 4$$

$$\Rightarrow dy = (16x^{2} + 4 - 8x) dx$$

$$\Rightarrow \int dy = \int 16x^{2} dx + 4 \int dx - 8 \int x dx$$

$$\Rightarrow y=16 \times \frac{x^3}{3} + 4x - 8 \times \frac{x^2}{2} + c$$
$$\Rightarrow y = \frac{16}{3}x^3 + 4x - 4x^2 + c$$

When x = 1, y =
$$\frac{1}{3}$$

 $\frac{1}{3} = \frac{16}{3} + 4 - 4 + 6$

$$\frac{1}{3} = \frac{16}{3} + 4 - 4 + c$$

$$\therefore y = \frac{16}{3}x^3 + 4x - 4x^2 - 5$$

73. B

$$Max Z = 5x + 10y$$

Subject to
$$x + 2y \le 120$$

$$x + y \ge 60$$

$$x - 2y \ge 0$$

$$x \ge 0$$
, $y \ge 0$

For
$$x + 2y = 120$$

For
$$x + y = 60$$

For
$$x = 2y$$

Corner points one (40, 20), (60, 30), (120, 0) and (60, 0).

at
$$(40, 20)$$
, $Z = 200 + 200 = 400$

at
$$(120, 0)$$
, $Z = 300 + 300 = 600$

at
$$(120, 0)$$
, $Z = 600$

at
$$(60, 0)$$
, $Z = 300$

Max. value of Z = 600.

74. ©

$$Min Z = 6x + 21y$$

Subject to
$$x + 2y \ge 3$$

$$x + 4y \ge 4$$

$$3x + y \ge 3$$

$$x \ge 0$$
, $y \ge 0$

For
$$x + 2y = 3$$
, $(3, 0)$, $(1, 1)$

For
$$x + 4y = 4$$
, $(4, 0)$, $(0, 1)$

For
$$3x + y = 3$$
, $(1, 0)$, $(0, 3)$

Corner points of the unbounded region are (0, 3), $\left(\frac{3}{5}, \frac{6}{5}\right)$, $\left(2, \frac{1}{2}\right)$ and (4, 0).

at
$$(0, 3)$$
, $Z = 63$

at
$$\left(\frac{3}{5}, \frac{6}{5}\right)$$
, $Z = \frac{18}{5} + \frac{126}{5} = \frac{144}{5} = 28.8$

at
$$\left(2, \frac{1}{2}\right)$$
, $Z = 12 + \frac{21}{2} = \frac{45}{2} = 22.5$

at
$$(4, 0)$$
, $Z = 24$

Now, 6x + 21y < 22.5 determines the open half plane where no point is common with the feasible region.

Min Z = 22.5 at
$$(2, \frac{1}{2})$$
.

75. ©

$$= \int \frac{\mathrm{dx}}{\cos^3 x \sqrt{2\sin 2x}}$$

$$= \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}}$$

$$= \int \frac{dx}{\cos^3 x \sqrt{2 \times 2 \sin x \cos x}}$$

$$= \int \frac{dx}{\cos^4 x \sqrt{\tan x}}$$

$$= \int \frac{\mathrm{dx}}{\cos^4 x \sqrt{\tan x}}$$

$$= \frac{1}{2} \int \frac{\sec^2 x \times \sec^2 x \, dx}{\sqrt{\tan x}} \qquad \text{Let } \tan x = z^2$$

$$= \frac{1}{2} \int \frac{(1+z^4) \, 2 \, \cancel{z} \, dz}{\cancel{z}}$$

$$= \int dz + \int z^4 dZ$$

$$= z + \frac{z^5}{5} + k$$

$$= (\tan x)^{\frac{1}{2}} + \frac{(\tan x)^{\frac{5}{2}}}{5} + k$$

$$\therefore (\tan x)^{\frac{1}{2}} + \frac{1}{5} (\tan x)^{\frac{5}{2}} + k = (\tan k)^A + C(\tan x)^B + k$$

$$\Rightarrow A = \frac{1}{2}, C = \frac{1}{5}, B = \frac{5}{2}$$

$$\therefore A + B + C = \frac{1}{2} + \frac{5}{2} + \frac{1}{5} = \frac{16}{5}$$

Biology

76. ®

Lie close to each other

77. A

12.

78. ®

1.

79. ®

The marsupials are examples of divergent evolution.

The Australian mammals are examples of convergent evolution. In convergent evolution, organisms not closely related, independently evolve similar traits as a result of adaptation to similar environment or ecological niches.

80. A

Morphine.

81. ©

Trichoderma polysporum-Statin Statin is obtained from *Monascus purpureas*

82. A

By elution

83. **(A**)

PCR.

The DNA polymerase obtained from the microbe , can be heated to a temperature high enough to melt DNA and yet is still able to function.

84. A Formation of hydrogen bonds between sticky ends of DNA fragments. 85. ® Commensalism. 86. A Both A and R are true and R is the correct explanation of A. 87. B Both A and R are true but R is not the correct explanation of A. 88. A Both A and R are true and R is the correct explanation of A. 89. © A is true but R is false. The amphibians evolved into reptiles. 90. B Both A and R are true but R is not the correct explanation of A 91. A Diploid; mitosis. 92. A Spermiation. 93. A One second polar body and one ovum. 94. A Secretory phase. 95. © This occurs due to failure of segregation of chromatids during cell division cycle, resulting in the gain of chromosomes. 96. A A polypeptide of 24 amino acids will be formed. UAA is a termination codon which will stop the polypeptide synthesis. So the resultant polypeptide will have 24 amino acids. 97. © Klinefelter's syndrome. 98. ® The diversity in the organisms living in the region.

100. A

Cynodon.

99. B

Lesser inter-specific competition.