

Monthly Progressive Test

Class: X (S)

Subject: PCMB

Test Booklet No.: MPT07

Test Date: 2 2 1 2 2 0 2 4

Time: 120 mins

Full Marks: 200

Solutions

Physics

1. ©

A magnetic field can not exert a force on a stationary electric charge.

2. **B**

Apply Fleming's left hand rule.

3. ©

Into the page \oplus . Apply Flemings left hand rule.

4. **B**

Clockwise current:

Anticlockwise current:

5. A

The core of electromagnet is soft iron.

6. D

$$B = \mu_0 \text{ ni} = 4\pi \times 10^{-7} \times \frac{100}{\left(\frac{50}{100}\right)} \times 2.5$$
$$= 4\pi \times 10^{-7} \times 200 \times 2.5$$
$$= \pi \times 10^{-7} \times 2000 = 2\pi \times 10^{-4} \text{ T}$$
$$= 6.28 \times 10^{-4} \text{ T}$$

7. A

M = N(iA)

8. (A)

Iron nail is magnetic material. So, in normal condition, iron nail cannot attract another nail.

10. ©

Reversing the current in the straight wire, reverses the direction of magnetic field produced.

```
11. ©
```

As $B = \frac{\mu_0}{4\pi} \frac{2i}{r}$, therefore $B \alpha \frac{1}{r}$

12. ®

True, we can apply right hand thumb rule.

13. (A)

As $B \propto N$ (number of turns)

14. (A)

As $B \propto i$ where i is current in the coil

15. ©

As statement of Right Hand Thumb Rule is correct in the assertion part

16. (A)

$$P = P_1 + P_2 = 3.5 + (-2.5) = +1D$$

P = 3.5 + (-2.5) = 1D =
$$\frac{100}{f(cm)}$$

∴ f = 100 cm

18. A

Series: 3 + 3 = 6 ohm

Parallel: $\frac{6\times 3}{6+3} = 2$ ohm Series : 3 + 3 + 2 = 8 ohm $i = \frac{12}{8} = \frac{3}{2} = 1.5A$

19. ®

[3]

$$\therefore R = \frac{2}{3} \text{ ohm}$$
21. (A)
$$r = \frac{mv}{qB}$$

$$r_{\alpha} = \frac{4m_p}{(+2e)} \times \frac{v}{B} = 2r_p$$

$$r_{\alpha} = \frac{m_{\alpha} \cdot v_{\alpha}}{(+2e)B} \implies \text{given } m_{\alpha} \cdot v_{\alpha} = m_{p} \cdot v_{p}$$
$$r_{p} = \frac{m_{p} \cdot v_{p}}{(+e)B} \implies r_{p} = \frac{m_{\alpha} \cdot v_{\alpha}}{(+e)B}$$
$$\therefore r_{\alpha} = \frac{r_{p}}{2} \implies 2 : 1 = r_{p} : r_{\alpha}$$

We know
$$P = \sqrt{2km}$$
 : $r = \frac{\sqrt{2km}}{B}$

$$\frac{\mathbf{r}_{\mathbf{p}}}{\mathbf{r}_{\alpha}} = \sqrt{\frac{\mathbf{m}_{\mathbf{p}}}{\mathbf{m}_{\alpha}}} \times \frac{\mathbf{q}_{\alpha}}{\mathbf{q}_{\mathbf{p}}} = \sqrt{\frac{1}{4}} \times \frac{2}{1} = 1$$

24. D

Ve know
$$P = \sqrt{2km}$$
 : $r = \frac{\sqrt{2km}}{B}$
 $\frac{r_P}{r_\alpha} = \sqrt{\frac{m_P}{m_\alpha}} \times \frac{q_\alpha}{q_P} = \sqrt{\frac{1}{4}} \times \frac{2}{1} = 1$

$$\pi \mathbf{r} = \mathbf{L} \implies \mathbf{r} = \frac{\mathbf{L}}{\pi}$$
$$\mathbf{M}' = (\mathbf{m})(2\mathbf{r}) = 2 \cdot \frac{\mathbf{mL}}{\pi} = \frac{2\mathbf{M}}{\pi}$$

25. A

Area =
$$\left(\frac{\pi a^2}{4} \times 2\right) + a^2 = \frac{(\pi + 2)a^2}{2}$$

M = $\left(\frac{\pi + 2}{2}\right)a^2$ I

	[5]
•	Chemistry
26 .	
	Wrong statement is : Diamond is a good conductor of electricity.
27. ©	C U and C U both arounsaturated compound C U is also upsaturated compound
	C_3H_6 and C_2H_2 both are unsaturated compound. C_2H_4 is also unsaturated compound. C_2H_6 , C_4H_{10} , saturated hydrocarbon.
28. ©	
aa @	In case of esterification reaction the role of concentrated H_2SO_4 is dehydrating agent.
29. (A)	Electrical conductivity of methane is very low because methane is a gaseous molecule.
30. ©	
	Ethanol and dimethyl ether are functional group isomerism as they have different functional group but same molecular formula C_2H_6O . ethanol : $C_2 H_6 O \Rightarrow CH_3 CH_2 OH$ Dimethyl ether : $C_2H_6O \Rightarrow CH_3 - O - CH_3$
31. (A)	
	Methane forms methyl chloride and hydrochloric acid after reacting with chlorine gas in diffused sunlight. This is an example of substitution reaction.
	$CH_4(g) + Cl_2(g) \xrightarrow{\text{sunlight}} CH_3Cl(g) + HCl(g)$
32. ®	Formation of polyothone from others is an example of polymerization reaction
	Formation of polyethene from ethene is an example of polymerization reaction. CUL CUL OU Cone. H_2SO_4 CUL (at here)
	$CH_3CH_2OH \xrightarrow{Cone. H_2SO_4} CH_2 = CH_2$ (ethene).
	This is Dehydration reaction.
	CH ₃ CH ₂ OH $\xrightarrow{\text{NaOH / CaO}}$ CH ₄ ; This is decarboxylation reaction.
	$CH_4 \xrightarrow{4Cl_2} CCl_4$; Chlorination reaction (Substitution reaction)
33. ®	Assertion (A): C^{4-} ion is a very stable. This is correct. Reason (R): C^{4-} ion has 10 electrons and 6 protons.

[6]

This is also correct, but it is not the correct explanation of Assertion (A). Thus, the answer is B.

34. D

Covalent molecules :

→ have low melting and Boiling point

- \rightarrow are bad conductors of electricity
- \rightarrow are insoluble in polar solvent.

35. ©

Denatured alcohol means methanol and other additive are added to ethanol to make unfit for drinking.

36. ©

Artificial diamond is formed by applying pure carbon to high temperature and pressure.

37. D

Carbon – Iodine bone is weakest as the electronegativity of Iodine is least amongst F, Cl, Br, I. Electronegaivity decreases F > Cl > Br > I.

38. ®

Assertion (A) : is correct. $CH_3 CH_2 CH_2 OH$ is oxidised with alkaline KMnO₄. **Reason (R)** : is also correct. KMnO₄ is an ionic compound. This is also correct, but not correct explanation of Assertion. Thus, the answer is B.

39. ®

When magnesium and oxygen form magnesium oxide then correct statement is : metal releases 2 electrons and non-metal accepts 2 electrons.

40. ®

x = Total number of electrons in the outer most shell of N^{3-} ion

 $= 5 + 3 = 8 [N_7 = K_2 L_5]$ y = Total number of electrons in the outermost shell of oxygen atom = 6 $[O_8 = K_2 L_6]$

$$\therefore x + y = 8 + 6 = 14$$

41. ©

When calcium comes contact with water then it starts floating as the Produced gas (H_2) sticks to the metal.

$$Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$$

42. ®

Assertion (A) : Aluminium is used to make utensils for cooking. This is correct. **Reason (R)** : Aluminium is highly reactive metal. This is also correct, but it is not the correct explanation of Assertion (A) ; thus, the option 'B' is answer.

43. A

Assertion (A): Sodium is kept immersed in kerosene oil. This is correct. **Reason (R):** Sodium is a very reactive metal. This is correct & the correct explanation of Assertion (A). Thus the answer is (A).

44. D

When silver chloride is exposed to sunlight grey coloured silver is produced along with Cl_2 gas.

$$2 \operatorname{AgCl}(s) \xrightarrow{\text{sunlight}} 2 \operatorname{Ag}(s) + \operatorname{Cl}_2 \uparrow$$

(grey)

45. ©

Both octet rule and duplet rules arre properly obeyed.

$$\begin{array}{l} \operatorname{Fe}_{2}O_{3} + 2\operatorname{Al} \longrightarrow 2 \operatorname{Fe} + \operatorname{Al}_{2}O_{3} \\ X & Y & P & Z \end{array}$$

$$X = 1, Y = 2, \qquad P = 2, \quad Z = 1$$

$$\therefore X + Y + 2 Z + P = 1 + 2 + 2 + 2 = 7 \Rightarrow (Q) = \operatorname{Nitrogen atom}(N_{7}) \\ \operatorname{Now}, N + \frac{3}{2} H_{2} \rightarrow \operatorname{NH}_{3} \end{array}$$

46. D

Assertion (A) : In CCl_4 molecule octet of carbon is satisfied but not satisfied for chlorine – This is wrong.

Reason (R) : Total number of bonds present in CH_3COOH is 8 :

$$\begin{array}{ccc} H & O \\ I & \parallel \\ H - C - C - O - H \\ I \\ H \end{array}$$

This is correct. Thus the Answer is 'D' .

47. ©

Assertion (A): Two isomeric hydrocarbons are possible having molecular formula C_4H_{10} . this is correct.

Reason (R) : General formula for alkene is $C_nH_{2n} + 2$. This is wrong. Thus, the answer is 'C'.

48. D

 $C_2H_5OH + Na \longrightarrow C_2H_5ONa + 1/2 H_2$

(I) There is only one bond in he produced gaseous compound ie. $H_2(H-H)$. this is correct.

(II) The salt produced in this reaction is same when a salt produced during the

reaction between ethanoic acid and sodium hydroxide. This is not correct.

$$CH_3 COOH + NaOH \longrightarrow CH_3 COONa + H_2O$$
(Salt)

(III) Ethanol and sodium metal is a reducing agent. This is correct as it gives hydrogen. Thus the option 'D' is correct.

49. ®

The number of carbon atoms surrounding each carbon atom in a diamond are 4.

50. ®

Assertion (A) : A mixture of pure oxygen and ethyne is used for welding. This is correct.

Reason (R): Oxygen molecule contains double bond while ethyne molecule contains triple bond. This is also correct but it is not the correct explanation of Assertion.

•	• Mathematics •				
51.	©				
	Radius = 5x cm				
	height = 7x cm				
	$\therefore \text{ volume} = \pi (5x)^2 \times 7x \text{ cm}^3$				
	$=\pi \times 25 \times 7x^3 \text{ cm}^3$				
	$\therefore \pi \times 25 \times 7 \times x^3 = 550$				
	$\Rightarrow \frac{22}{7} \times 25 \times 7 \times x^3 = 550$				
	$\Rightarrow \frac{22}{7} \times 25 \times 7 \times x^3 = 550$ $\Rightarrow x^3 = \frac{550^{50^{25}}}{22_{2} \times 25} = 1$				
	$\therefore x = 1$				
	\therefore radius = 5 cm				
52.					
	Canvas used for making the tent				
	$=2\pi rh + \pi rl$				
	$=\pi r(2h+l)$				
	$=\frac{22}{7}\times 4(2\times 2+5)m^2$				

$$=\frac{22}{7} \times 4 \times 9 \,\mathrm{m}^2 = 36 \,\pi \,\mathrm{m}^2$$

53. D

Cross-section of the river = $3 \times 60 \text{ m}^2$

Rate of flow = 2.4 km/h

$$= 2.4 \times \frac{5}{18} \text{ m/s}$$
$$= \frac{24}{10} \frac{4^2}{2} \times \frac{5}{3} = \frac{2}{3} \text{ m/s}$$

:. Volume of water flows in one second = $3 \times 60 \times \frac{2}{3} \text{ m}^3$ = 120 m³

 \therefore Volume of water flows in one minute = $120 \times 60 \text{ m}^3$

$$= 7200 \text{ m}^3$$

[9]

54. A

X	f	fx
4	5	20
6	10	60
9	10	90
10	7	70
15	8	120
	40	360

$$\therefore \text{ Mean} = \frac{\Sigma f x}{\Sigma f} = \frac{360}{40} = 9$$

55. ©

Mode = 19 (:: it occurs maximum time)

56. (A)

Total outcomes = 17

Favourable outcomes = 0

$$\therefore$$
 Required probability $=\frac{0}{17}=0$

57. ©

Let number of white balls = x.

[10]

∴ Probability (drawing a white ball) = $\frac{x}{10 + x}$. Probability (drawing a red ball) = $\frac{10}{10 + x}$. ∴ $\frac{x}{10 + x} = 2 \times \frac{10}{10 + x}$ ⇒ x = 20

58. A

Amount of water flow out through the pipe = 5×30 cm³/sec

 $= 150 \text{ cm}^3/\text{sec.}$

 \therefore Amount of water flow in one minute = $150 \times 60 \text{ cm}^3 = 9000 \text{ cm}^3$

= 9 litres

: Assertion is true.

Reason is also true and reason is the correct explanation of assertion.

59. ©

Mean =
$$\frac{1+3+4+5+7+4}{6} = \frac{24}{6} = 4$$

∴ m = 4
Again, $\frac{3+2+2+4+3+3+p}{7} = \frac{17+p}{7}$
∴ $\frac{17+p}{7} = 3$
⇒ 17+p=21 ⇒ p=4
Now, 2, 2, 3, 3, 3, 4, 4
∴ Median = 3
∴ q = 3
∴ p + q = 4 + 3 = 7
∴ Assertion is true
But reason is false.
(5)

Total number of outcomes = $6^2 = 36$

61. (A)

60.

Total number of outcomes = 36 Number of favourable outcomes = 0 \therefore Required probability $=\frac{0}{36}=0$ 62. A Total outcomes = 36 Number of favourable outcomes = 6[(1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1)] \therefore Required probability $=\frac{6}{36}=\frac{1}{6}$ 63. ® Volume of water in half of the tank $=\frac{2}{3}\pi r^3 \times \frac{1}{2}$ $=\frac{1}{3}\times\frac{22^{11}}{7}\times\frac{3}{2}\times\frac{3}{2}\times\frac{3}{2}\times\frac{3}{2}$ m³ $=\frac{99}{28}$ m³ $=\frac{9900000}{28}$ cm³ $=\frac{99000}{28}$ litres \therefore Time required = $\frac{99000}{28_4} \times \frac{7}{25}$ seconds = 990 seconds $=\frac{990}{60}$ minutes $=\frac{33}{2}$ minutes = 16.5 minutes.

Height (in cm)	Number of students
160-162	15
163-165	118
166-168	142
169-171	127
172-174	18

Modal class = 165.5 - 168.5

Mode =
$$165.5 + \frac{142 - 118}{2 \times 142 - 118 - 127} \times 3$$

= $165.5 + \frac{24}{39_{13}} \times 3$
= $165.5 + 1.85 = 167.35$ cm

$$A = \frac{x}{12}$$

$$B = \frac{x+6}{18}$$

$$\therefore 2A = B$$

$$\Rightarrow \frac{2x}{126} = \frac{x+6}{183}$$

$$\Rightarrow 3x = x + 6$$

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$
66. (A)

Area of shaded region =
$$\frac{30^{\circ}}{360^{\circ}} \times \pi \left(7^2 - \frac{7^2}{2^2} \right) m^2$$

= $\frac{1}{124} \times \frac{22^{11}}{7} \times \frac{21^7}{2} \times \frac{7}{2} m^2$
= $\frac{77}{8} m^2 = 9.625 m^2$

67. **(**A)

$$\tan 30^{\circ} = \frac{h}{500}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{500}$$

$$\therefore h = \frac{500}{\sqrt{3}} = \frac{500\sqrt{3}}{3} m$$

$$\therefore \text{ The height of the tower} = \frac{500\sqrt{3}}{3} m$$
68. ©

[12]

$$\Rightarrow \frac{a + \frac{(n-1)}{2}d}{a' + \frac{(n-1)}{2}d'} = \frac{3n-13}{5n+21}$$
Putting n = 47
$$\frac{a+23d}{a'+23d'} = \frac{141-13}{235+21}$$

$$\Rightarrow \frac{a_{24}}{a'_{24}} = \frac{128^{1}}{256^{2}} = \frac{1}{2}$$

$$= 1:2$$
69. (B)
$$ax^{2} + bx + c = 0$$

$$\therefore x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

 $\frac{S_n}{S'_n} = \frac{3n-13}{5n+21}$

 $\Rightarrow \frac{\frac{n}{2} \{2a + (n-1)d\}}{\frac{n}{2} \{2a' + (n-1)d'\}} = \frac{3n-13}{5n+21}$

 $\Rightarrow \frac{2a+(n-1)d}{2a'+(n-1)d'} = \frac{3n-13}{5n+21}$

70. ©

Let the fraction be
$$\frac{x}{y}$$

 $\frac{x+1}{y+1} = \frac{4}{5} \implies 5x+5 = 4y+4$
 $\implies 5x-4y = -1$
Again, $\frac{x-5}{y-5} = \frac{1}{2}$
 $\implies 2x - 10 = y - 5$
 $\implies 2x - y = 5$

$$\Rightarrow 8x - 4\psi = 20$$

$$5x - 4y = -1$$

$$\frac{(-) \quad (+) \quad (+)}{3x = 21}$$

$$x = 7$$

$$\therefore y = 2x - 5 = 2 \times 7 - 5 = 9$$

$$\therefore$$
 Fraction = $\frac{7}{9}$

Curved surface area = $2\pi rh + \pi rl$

$$= \pi r (2h + l)$$

= $\frac{22}{7} \times 84^{12} \times (2 \times 50 + 91) m^2$
= 22 × 12 × 191 m²
= 50424 m²
∴ quantity of canvas required = $\left(50424 + 50424 \times \frac{1}{5}\right) m^2$
= $(50424 + 10084.8) m^2$
= $60508.8 m^2 \approx 60509 m^2$

72. ©

Surface area of hemispherical bowl =
$$2\pi R^2 + 2\pi r^2 + \pi (R^2 - r^2)$$

= $3\pi R^2 + \pi r^2$
= $\pi (3R^2 + r^2)$
= $\frac{22}{7} \left\{ 3 \times \left(\frac{17}{2}\right)^2 + \left(\frac{15}{2}\right)^2 \right\} cm^2$
= $\frac{22}{7} \times \left(\frac{867}{4} + \frac{225}{4}\right) cm^2$
= $\frac{22}{7} \times \frac{1092}{4} cm^2$
= $22 \times 39 cm^2$

$$\therefore \text{ Cost of polishing} = \underbrace{\underbrace{1}_{4_2} \times 22^{11} \times 39}_{= \underbrace{1}_{2} \times 22^{11} \times 39}$$
$$= \underbrace{1}_{2} \times \underbrace{214.50}_{= \underbrace{1}_{2} \times 214.50}$$

73. **(**A)

$$1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

∴ Mean = $\frac{n(n+1)(2n+1)}{6} \times \frac{1}{n} = \frac{(n+1)(2n+1)}{6}$

74. ©

Mode = 3 median – 2 mean

75. A

Total outcomes = 20

Total favourable outcomes = 3

 \therefore Required probability = $\frac{3}{20}$

Biology

76. (A)

23 pairs

77. **(**A)

Phenotype Phenotype is the expression of a trait

78. ®

Tt Heterozygous or hybrid

79. ©

CFC

When CFCs rise up into the atmosphere, they are broken down by UV radiation and release chlorine atoms which break ozone molecules.

80. ©

Trait

Trait is the phenotypic expression of a character

81. D

All

82. D

Incineration

83. A

Purple flowers Purple colour of flowers is the dominant trait.

84. (A)

Emasculation of flowers of one of the parent plant. Emasculation made the flowers unisexual thus helping to prevent self pollination.

85. D

Man

Man is at the highest trophic level, hence shows highest concentration of the pesticide.

86. (A)

Both A and R are true and R is the correct explanation of A.

87. D

A is false but R is true.

As the eggs bear only X chromosome, so human females are homogametic.

/ND\P

88. ©

UV and O_2 , respectively

89. (A)

Both A and B

90. D

United Nations Environment Programme

91. ®

Gall bladder

92. D

All of these

93. A

Simple diffusion

The organisms throw out wastes across their cell surface into the surrounding medium, along the concentration gradient.

94. ®

2

Incomplete breakdown of pyruvate causes lesser production of energy.

95. ®

Vasopressin

96. ©

Scavenger

97. ®

Decreases

The energy transferred along the food chain gradually decreases, hence the number of individuals at each trophic level is lesser than the previous one.

98. ©

Phenotypic ratio of the F2 offsprings

99. A

Yellow and rounded seeds

100. D

RrYy

Heterozygotes having both pairs of the contrasting alleles for each trait.