

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: Mathematics

Total : 11 Marks (expected) [MCQ-1 Mark, VSA-2 Marks, SA-3 Marks, LA-5 Marks]

Chapter Name : *Differential Calculus* (Chap : 5 & 6)

Level 1 & 2 Combined

SECTION - A

MCQ Type (1 mark each):

1. If $y = f(x)$ is a differentiable function of $f(x)$. Then

(A) $f(x + \Delta x) = f'(x) \cdot \Delta x$ (B) $f(x + 4x) = f(x) + f'(x) \Delta x$ (C) $f(x + 4x) = f(x) + \Delta x$ (D) none of these

[Hints : Rate change]

2. The differential of $\log \sin x$ is

(A) $\cot x$ (B) $-\tan x \, dx$ (C) $\cot x \, dx$ (D) $\tan x \, dx$

[Hints : Rate change]

3. If the function $f(x)$ is differentiable at $x = a$, then it is increasing at $x = a$ when

(A) $f'(a) > 0$ (B) $f'(a) < 0$ (C) $f'(a) \geq c$ (D) $f'(a) \leq 0$

[Hints : Increasing and decreasing function]

4. The minimum value of the function $f(x) = x^2 - x + 2$ is

(A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) $-\frac{7}{4}$ (D) $\frac{7}{4}$

[Hints : Maxima and minima]

5. $f : [-1, 1] \rightarrow \mathbb{R}$ is defined by $f(x) = |x|$ is not differentiable at

(A) $x = -1$ (B) $x = 0$ (C) $x = 1$ (D) none of these

[Hints : Differentiability]

6. The function $f(x) = x^K$ is continuous at $x = K$, when

(A) $K \neq 0$ (B) $K < 0$ (C) $K \leq 0$ (D) $K \geq 0$

[Hints : Continuity and Differentiability]

7. The points of discontinuities of the function $f(x) = \frac{x+2}{2x^2 - x - 1}$

(A) $\frac{1}{2}, -1$ (B) $-\frac{1}{2}, -1$ (C) $1, -\frac{1}{2}$ (D) $\frac{1}{2}, 1$

[Hints : Continuity and Differentiability]

SECTION - B

Very Short Answer (VSA) (2 marks each questions):

1. Show that the function $f(x) = 2x - |x|$ is continuous at $x = 0$.

[Hints : Continuity and Differentiability]

2. If a function has a finite derivative at a given point, prove that it is continuous at that point. Is the converse true? Justify your answer.

[Hints : Continuity and Differentiability]

3. Find the derivative w.r.t. x : $y = \cot^{-1} \sqrt{\frac{1 - \sin x}{1 + \sin x}} \left(0 < x < \frac{\pi}{2} \right)$

[Hints : Differentiation]

4. Let V and S be the volume and surface respectively of a sphere of radius r . Prove that, $2 \frac{dv}{dt} = r \cdot \frac{ds}{dt}$.

[Hints : Rate change]

5. If $x > \frac{1}{2}$ show that the function $f(x) = x(4x^2 - 3)$ is increasing.

[Hints : Increasing and decreasing function]

6. Show that the function $f(x) = \sin x \left(\frac{\pi}{2} \leq x \leq \pi \right)$ is decreasing.

[Hints : Increasing and decreasing function]

7. Show that, the maximum value of the function $f(x) = \left(x + \frac{1}{x} \right)$ is less than its minimum value.

SECTION - C

Short Answer (SA) (3 marks each questions):

1. Prove that, the greatest rectangle inscribed in a given circle is a square.

[Hints : Maxima & Minima]

2. Find the maximum value of $x^{\frac{1}{x}}$.

[Hints : Maxima and Minima]

3. Find the intervals in which the function $f(x) = x^3 - 6x^2 + 9x + 15$ is decreasing.

[Hints : Increasing and decreasing function]

4. Find the interval in which the function $f(x) = \sin x - \cos x$ where $0 < x < 2\pi$ is increasing.

[Hints : Increasing and decreasing function]

5. If $y = x^4 - 12$ and if x changes from 2 to 1.99, what is the approximate change in y ?

[Hints : Rate change]

6. If $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$, show that $\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}$.

[Hints : Differentiation]

7. If $g(x)$ is the inverse of $f(x)$ and $f'(x) = \frac{1}{1 + x^3}$, show that $g'(x) = 1 + [g(x)]^3$.

SECTION - D

Long Answer (LA) (5 marks each questions):

1. Prove that the function $f(x) = \sin \pi|x|$ is continuous at $x = 0$ but not differentiable at the same point.

[Hints : Continuity and differentiability]

2. If $x = \sec \theta - \cos \theta$ and $y = \sec^n \theta - \cos^n \theta$, show that $(x^2 + 4) \left(\frac{dy}{dx} \right)^2 = n^2(y^2 + 4)$

[Hints : Differentiation]

3. If a triangle ABC inscribed in a fixed circle be slightly varied in such a way that its vertices are always on the circle, show that, $\frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0$

[Hints : Rate change]

4. Use the function $f(x) = x^{\frac{1}{x}}$; $x > 0$, to determine the bigger of the two numbers e^π and π^e .

[Hints : Increasing and decreasing function]

5. Show that the semi-vertical angle of a cone of maximum volume and given slant height is $\tan^{-1}(\sqrt{2})$.

[Hints : Maxima and minima]

6. Determine a point on the parabola $x^2 = 8y$ which is nearest to the point $(2, 4)$.

[Hints : Maxima and minima]

7. Find the coordinates of the point on the curve $y = \frac{x}{1+x^2}$ where the tangent to the curve has the greatest slope.

[Hints : Maxima and minima]

A|N|S|W|E|R _____

SECTION - A

1. (B)
2. (C)
3. (A)
4. (D)
5. (B)
6. (D)
7. (C)

SECTION - B

3. $\frac{1}{2}$

SECTION - C

2. $e^{\frac{1}{e}}$
3. $(1, 3)$
4. $\left(0, \frac{3\pi}{4}\right) \cup \left(\frac{7\pi}{4}, 2\pi\right)$
5. 0.32

SECTION - D

4. $e^\pi > \pi^e$
6. $(4, 2)$
7. $(0, 0)$