

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: MATHEMATICS

Chapter Name : Integral Calculus (Chap : 7 & 8)

Total : 14 Marks (expected) [MCQ(1)-2 Mark, VSA-(2)-4 Marks, SA-(1)-3 Marks, LA(1)-5 Marks]

Level 1 & 2 Combined

Section - A

MCQ Type :

1. Area bounded by the line $y = 4x$, the y-axis and the line $y = 2$ is

(A) 2 sq. units (B) 4 sq. units (C) $\frac{1}{4}$ sq. units (D) $\frac{1}{2}$ sq. units

(Hints : Application of integration)

2. The value of $\int_0^2 x[x]dx$ is ; [] \rightarrow GIF

(A) $\frac{7}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) none of these

(Hints : Definite Integration)

3. If $f(a-x) = f(x)$ then $\int_0^a xf(x)dx$ is equal to

(A) $\int_0^a xf(x)dx$ (B) $a \int_0^a xf(x)dx$ (C) $\frac{a}{2} \int_0^a xf(x)dx$ (D) 0

(Hints : Properties of definite integration)

4. $\int x^2 \sec^2(x^3)dx = a \tan(x^3) + c$, then a is equal to

(A) 3 (B) $\frac{1}{2}$ (C) 2 (D) $\frac{1}{3}$

(Hints : Method of substitution)

5. If a is such that $\int_0^a x dx \leq a + 4$ then

(A) $0 \leq a \leq 4$ (B) $-2 \leq a \leq 0$ (C) $a \leq -2$ or $a \leq 4$ (D) $-2 \leq a \leq 4$

(Hints : Definition of definite integral)

6. If $\int_0^a \frac{dx}{1+4x^2} = \frac{\pi}{8}$, then value of a is equal to

(A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) 2 (D) 1

(Hints : using $\int_0^a \frac{dx}{a^2+x^2}$)

7. $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ is equal to

(A) $\cos \sqrt{x} + c$ (B) $2\cos \sqrt{x} + c$ (C) $-2\cos \sqrt{x} + c$ (D) $\sqrt{x} \cos \sqrt{x} + c$

(Hints : Substitution)

8. $\int 2x \sin(x^2 + 1) dx$ is equal to

(A) $\cos(x^2 + 1) + c$ (B) $2\sin(x^2 + 1) + c$ (C) $\sin(x^2 + 1) + c$ (D) $-\cos(x^2 + 1) + c$

(Hints : Substitution)

9. The area of the region bounded by the curve $x^2 = 4y$ and the straight line $x = 4y - 2$ is

(A) $\frac{3}{8}$ sq. unit (B) $\frac{5}{8}$ sq. unit (C) $\frac{7}{8}$ sq. unit (D) $\frac{9}{8}$ sq. unit

(Hints : Application of integration)

10. The area of the smaller region between the circle $x^2 + y^2 = 2$ and the line $x + y = \sqrt{2}$ in the first quadrant is

(A) 1 sq. unit (B) π sq. unit (C) 2π sq. unit (D) $\left(\frac{\pi}{2} - 1\right)$ sq. unit

(Hints : Application of integration)

11. The value of $\int \sqrt{1 + \sin 2x} \, dx$ is

(A) $\sqrt{x + \cos 2x} + c$ (B) $\sin x + \cos x + c$ (C) $\cos x - \sin x + c$ (D) $\sin x - \cos x + c$

(Hints : Standard result)

12. The value of $\int \frac{e^x(1+x)}{\cos^2(x \cdot e^x)} \, dx$ is

(A) $\sin(x \cdot e^x) + c$ (B) $\sec^2(x \cdot e^x) + c$ (C) $\tan(x \cdot e^x) + c$ (D) $\cos(x \cdot e^x) + c$

(Hints : Method of substitution)

13. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx$

(A) $\frac{\pi}{2}$ (B) $\frac{\pi^3}{8}$ (C) $-\frac{\pi}{2}$ (D) 0

(Hints : $\int_{-a}^a f(x) \, dx = 0$ if f is odd)

14. $\int e^x \sin x \, dx = ?$

(A) $\frac{e^x}{2} (\sin x - \cos x) + c$
(C) $\frac{e^x}{2} (\cos x - \sin x) + c$
(B) $\frac{e^x}{2} (\sin x + \cos x) + c$
(D) $\frac{e^x}{2} \sin(x + \tan^{-1} 1) + c$

(Hints : Integration by parts)

Section - B

very short answer (VSA) :

1. If m and n are positive integers and $m \neq n$, show that $\int_0^{2\pi} \sin mx \sin nx \, dx = 0$

(Hints : Definite integration)

2. If $\frac{d}{dx} f(x) = g(x)$, find the value of $\int_a^b f(x)g(x) \, dx$

(Hints : Fundamental theorem of Calculus)

3. Prove that $\int_0^{\frac{\pi}{2}} \log(\tan x) \, dx = 0$

(Hints : Properties of definite integral)

4. Using integration, find the area of the region bounded by the line $2y + x = 8$ and the lines $x = 2$ and $x = 4$.

(Hints : Definite integral as an area)

5. Integrate : $\int \sin^3 x \cdot \cos^3 x \, dx$

(Hints : Indefinite Integral)

6. Integrate : $\int \cos^5 x \, dx$

(Hints : Indefinite Integral)

7. Integrate : $\int x \sin^{-1} x dx$

(Hints : Indefinite Integral)

8. Integrate : $\int \log x dx$

(Hints : Indefinite Integral)

9. Integrate : $\int \frac{dx}{e^x + e^{-x}}$

(Hints : Method of substitution)

10. Integrate : $\int \frac{dx}{2ax - x^2}$

(Hints : Method of substitution)

11. Evaluate : $\int \frac{1 + \cot x}{x + \log \sin x} dx$

(Hints : Method of substitution)

12. Evaluate : $\int \frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} dx$

(Hints : Method of substitution)

13. Evaluate : $\int \frac{\sin(\tan^{-1} x) dx}{1 + x^2}$

(Hints : Method of substitution)

14. Evaluate : $\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$

(Hints : Method of substitution)

15. Evaluate : $\int \sec^2(7 - 4x) dx$

(Hints : Method of substitution)

short Answer Question (SA) :

1. Evaluate : $\int \sin^4 x dx$

(Hints : Indefinite Integral)

2. Evaluate : $\int \frac{1 + \cos x}{1 - \cos x} dx$

(Hints : Indefinite Integral)

3. Show that $\int \cos 2x \cos 4x dx = \frac{\sin 6x}{12} + \frac{\sin 2x}{4} + c$

(Hints : Indefinite Integral)

4. Integrate : $\int \frac{\sin 2x dx}{a^2 \sin^2 x + b^2 \cos^2 x}$

(Hints : Method of substitution)

5. Integrate : $\int \frac{dx}{\sqrt{x+3} - \sqrt{x+2}}$

(Hints : Method of substitution)

6. Integrate : $\int \frac{dx}{1 + e^x}$

(Hints : Method of substitution)

7. Integrate : $\int \frac{x dx}{x^4 - x^2 + 1}$

(Hints : Method of substitution)

8. Integrate : $\int \frac{(x+2)dx}{2x^2+bx+5}$

(Hints : Method of substitution)

9. Integrate : $\int \frac{x^2dx}{x^2+6x+12}$

(Hints : Method of substitution)

10. Integrate : $\int \frac{dx}{\sqrt{5-4x-2x^2}}$

(Hints : Method of substitution)

11. Integrate : $\int (x+1)^2 \log x \, dx$

(Hints : Integration by parts)

12. Integrate : $\int (\sin^{-1}x)^2 \, dx$

(Hints : Integration by parts)

13. Integrate : $\int \frac{\sin^{-1}x}{x^2} \, dx$

(Hints : Integration by parts)

14. Using Integration find the common area between the parabolas $y^2 - ax = a^2$ and $y^2 + ax = a^2$

Section - D

Long Answer Question (LA) :

1. Find the area of the region enclosed between the circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$

(Hints : Definite integral as an area)

2. Find the area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$.

(Hints : Definite integral as an area)

3. Find the area of the region : $\{(x, y) : y^2 \leq 4x, 4x^2 + 4y^2 \leq 9\}$

(Hints : Definite integral as an area)

4. Find the area in the first quadrant bounded by the circle $x^2 + y^2 = 16$ and the line $y = x$.

(Hints : Definite integral as an area)

5. Prove that $\int_0^{\pi} \frac{x \sin x dx}{1 + \cos^2 x} = \frac{\pi^2}{4}$

(Hints : Definite integral)

6. Prove that $\int_{-a}^a \sqrt{\frac{a-x}{a+x}} dx = a\pi$

(Hints : Definite integral)

7. Prove that $\int_0^{\frac{\pi}{2}} \sin 2x \tan^{-1}(\sin x) dx = \frac{\pi}{2} - 1$

(Hints : Definite integral)

8. If $I_m = \int_1^e (\log x)^m dx$, Show that $I_m + m \cdot I_{m-1} < 3$.

(Hints : Definite integral)

9. Integrate : $\int \frac{dx}{x^4 + x^2 + 1}$

(Hints : Indefinite integral)

10. Integrate : $\int \left(\frac{1}{\log_e^x} - \frac{1}{(\log_e^x)^2} \right) dx$

(Hints : Integration by parts)

11. $\int \frac{xe^x dx}{(x+1)^2}$

(Hints : Integration by parts)

12. $\int e^x \frac{1 + \sin x}{1 + \cos x} dx$

(Hints : Integration by parts)

13. $\int \frac{(2x+3)dx}{\sqrt{x^2+4x+5}}$

(Hints : Method of substitution)

14. $\int \frac{(5-2x)dx}{\sqrt{5+4x-x^2}}$

(Hints : Method of substitution)

15. $\int \frac{dx}{x(x^{2026}+1)}$

(Hints : Method of substitution)

16. $\int \tan 2x \tan 3x \tan 5x dx$

(Hints : Method of substitution)

17. $\int \frac{dx}{\sqrt{\sin^3 x \sin(x+a)}}$

(Hints : Method of substitution)

18. $\int \sqrt{\frac{x}{a-x}} dx$

(Hints : Method of substitution)

19. Prove that $\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx = -\frac{1}{2} \sin 2x + c$

(Hints : Indefinite Integral)

20. $\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx = -\left(\frac{1}{2} \sin 2x + \sin x \right) + c$

(Hints : Indefinite Integral)

21. Find the function whose derivative is $2^{2x-1} + 2^{1-2x}$

(Hints : Indefinite Integral)

Section - A

1. (D)
2. (B)
3. (C)
4. (D)
5. (D)
6. (B)
7. (C)
8. (D)
9. (D)
10. (D)
11. (D)
12. (C)
13. (D)
14. (A)

Section - B_(VSA)

1. "Prove that type".
2. $\frac{1}{2} \left[\left\{ f(b) \right\}^2 - \left\{ f(g) \right\}^2 \right]$
3. "Prove that type".
4. 5 square units
5. $\frac{1}{4} \sin^4 x - \frac{1}{6} \sin^6 x + c$
6. $\sin x - \frac{2}{3} \sin^3 x + \frac{1}{5} \sin^5 x + c$
7. $\frac{x^2}{2} \sin^{-1} x + \frac{1}{4} x \sqrt{1 - x^2} - \sin^{-1} x + c$
8. $(\log_e^x - 1) + c$
9. $\tan^{-1}(e^x)$
10. $\frac{1}{2a} \log \left| \frac{x}{2a - x} \right| + c$
11. $\log|x + \log \sin x| + c$
12. $\frac{2}{5} \tan^5 \sqrt{x} + c$
13. $-\cos(\tan^{-1} x) + c$
14. $2 \sin(\sqrt{x}) + c$
15. $-\frac{1}{4} \tan(7 - 4x) + c$

Section - C(SA)

1. $\frac{1}{4} \left(\frac{\sin 4x}{8} - \sin 2x + \frac{3x}{2} \right) + c$
2. $-2 \cot \frac{x}{2} - x + c$
3. "Prove that type"
4. $\frac{1}{a^2 - b^2} \log|a^2 \sin^2 x + b^2 \cos^2 x| + c$

5. $\frac{2}{3} \left[\left(x+3 \right)^{\frac{3}{2}} + \left(x+2 \right)^{\frac{3}{2}} \right] + c$

6. $-\log|1+e^{-x}| + c$

7. $\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x^2-1}{\sqrt{3}} \right) + c$

8. $\frac{1}{4} \log|2x^2+6x+5| + \frac{1}{2} \tan^{-1} \left(2x+3 \right) + c$

9. $x - 3 \log|x^2+6x+12| + 2\sqrt{3} \tan^{-1} \left(\frac{x+3}{\sqrt{3}} \right) + c$

10. $\frac{1}{\sqrt{2}} \sin^{-1} \frac{\sqrt{2}(x+1)}{\sqrt{7}} + c$

11. $\frac{1}{3} \left[(x+1)^3 \log_e^x - \frac{x^3}{3} - \frac{3}{2}x^2 - 3x - \log_e^x \right] + c$

12. $x(\sin^{-1}x)^2 + 2\sqrt{1-x^2} \sin^{-1}x - 2x + c$

13. $-\frac{\sin^{-1}x}{x} + \log \left| \frac{1+\sqrt{1-x^2}}{x} \right| + c$

14. $\frac{8}{3}a^2$ square unit

Section -D (LA)

1. $2 \left(\frac{4\pi}{3} - \sqrt{3} \right)$ square unit

2. $\frac{16}{3}$ square unit unit

3. $\frac{9}{4} \cos^{-1} \frac{1}{3} + \frac{\sqrt{2}}{6}$

4. 2π square units,

5. 5, 6, 7, 8 \rightarrow "Prove that type"

9. $\frac{1}{4} \log \frac{x^2+x+1}{x^2-x+1} + \frac{1}{2\sqrt{3}} \left[\tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + \tan^{-1} \left(\frac{2x-1}{\sqrt{3}} \right) \right] + c$

10. $\frac{x}{\log_e^x} + c$

11. $\frac{e^x}{x+1} + c$

12. $e^x \tan \frac{x}{2} + c$

13. $2\sqrt{x^2+4x+5} - \log|x+2+\sqrt{x^2+4x+5}| + c$

14. $2\sqrt{5+4x-x^2} - \log|x+2+\sqrt{x^2+4x+5}| + c$

15. $\frac{1}{2026} \log \left| \frac{x^{2026}}{x^{2026}+1} \right| + c$

16. $\frac{1}{5} \log|\sec 5x| - \frac{1}{3} \log|\sec 3x| - \frac{1}{2} \log|\sec 2x| + c$

17. $-\frac{1}{x \sin \alpha} \sqrt{\cos \alpha + \sin \alpha \cdot \cot \alpha} + c$

18. $a \sin^{-1} \left(\sqrt{\frac{x}{a}} \right) - \sqrt{x(a-x)} + c$

19. "Prove that type"

20. "Prove that type"

21. $\frac{1}{2 \log_e^2} \left[2^{2x-1} - 2^{1-2x} \right] + c$