

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-X

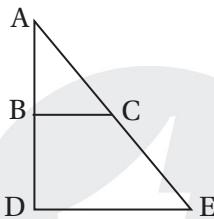
Subject: MATHEMATICS

Chapter Name : Triangles (Chap : 6)

Total : 8 Marks (expected) [MCQ(1)-1 Mark, SA-I(1)-2, LA(1)-5]

Level - 1

MCQ Type :


1. In $\triangle ABC$, $AC = 15$ cm and $DE \parallel BC$. If $AB/AD = 3$, then $EC =$
(A) 5 cm (B) 10 cm (C) 2.5 cm (D) 9 cm

Hint : use Basic Proportionality Theorem (Thales Theorem)

2. In $\triangle ABC$ and $\triangle DEF$, $\angle A = \angle E = 40^\circ$ and $AB/ED = AC/EF$. If $\angle F = 65^\circ$, then $\angle B =$
(A) 85° (B) 75° (C) 35° (D) 65°

Hint : $\triangle ABC \sim \triangle EDF$

3. The triangles ABC and ADE are similar, which of the following is true?

(A) $EC/AC = AD/DE$ (B) $BC/BD = CE/DE$ (C) $AB/AD = BC/DE$ (D) All of the above

Hint : use S-S-S property of similarity.

4. If in $\triangle CAB$ and $\triangle FED$, $AB/EF = BC/FD = AC/ED$, then :
(A) $\triangle ABC \sim \triangle DEF$ (B) $\triangle CAB \sim \triangle DEF$ (C) $\triangle ABC \sim \triangle EFD$ (D) $\triangle CAB \sim \triangle EFD$

Hint : use similarity concept of triangles.

5. $\triangle ABC$ is such that $AB = 3$ cm, $BC = 2$ cm and $CA = 2.5$ cm. If $\triangle DEF \sim \triangle ABC$ and $FE = 4$ cm, then find the perimeter of $\triangle DEF$.
(A) 14 cm (B) 15 cm (C) 12 cm (D) 10 cm

Hint : Use S-S-S property of similarity.

6. $\triangle ABC$, D and E are the points on the sides AB and AC respectively such that $DE \parallel BC$. If $AD = 6x - 7$, $DB = 4x - 3$, $AE = 3x - 3$, and $EC = 2x - 1$ then find the value of 'x'.
(A) 2 (B) 3 (C) 1 (D) 4

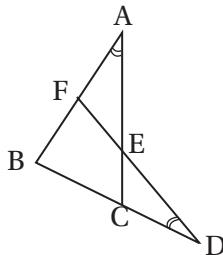
Hint : Use Basic Proportionality Theorem (Thales Theorem)

SA-I Type

7. ABCD is a trapezium, in which AB is parallel to DC and its diagonals intersect each other at point O.

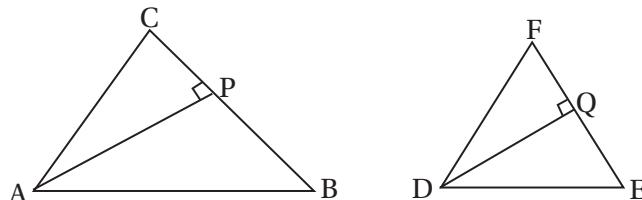
Show that $\frac{AO}{BO} = \frac{CO}{DO}$

Hint : $\triangle AOB \sim \triangle COD$ (A - A)


8. In ABC, X is the middle point of AB. If $XY \parallel BC$, then prove that Y is the middle point of AC.

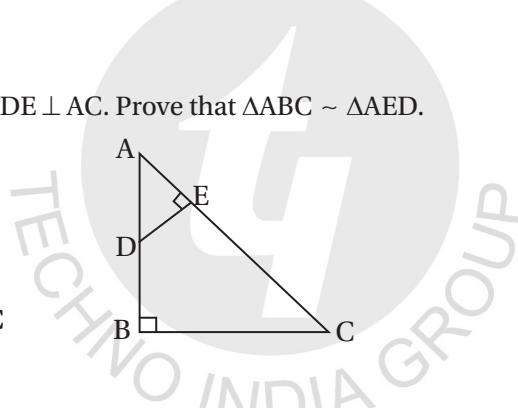
Hint : Use Basic Proportionality Theorem

9. The diagonals of a quadrilateral ABCD intersect each other at the point O, such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.


Hint : $\triangle AOB \sim \triangle COD$ (S - A - S)

10. In the figure, if $\angle A = \angle D$, then prove that $AE \times DC = DE \times AF$.

Hint : $\triangle AFE \sim \triangle DCE$ (A - A)


11. In the given figure, $\triangle ABC \sim \triangle DEF$, AP bisects $\angle CAB$ and DQ bisects $\angle FDE$.

Prove that: $\frac{AP}{DQ} = \frac{AB}{DE}$

Hint : $\triangle ABP \sim \triangle DEQ$ (A - A)

12. In the given figure, $AB \perp BC$ and $DE \perp AC$. Prove that $\triangle ABC \sim \triangle AED$.

Hint : $\angle DAE = \angle CAB$, $\angle AED = \angle ABC$

LA Type :

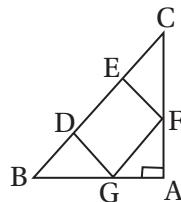
13. If $\triangle ABC \sim \triangle DEF$ and AX, DY are respectively the medians of $\triangle ABC$ and $\triangle DEF$. Then prove that

(i) $\triangle ABX \sim \triangle DEY$ (ii) $\triangle ACX \sim \triangle DFY$ (iii) $\frac{AX}{DY} = \frac{BC}{EF}$

Hint : NCERT Page No. 97 Q. 16

14. State and prove Basic Proportionality Theorem (Thales Theorem).

Hint : NCERT Page No. 80 Theorem 6.1

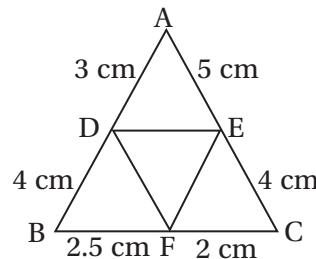

15. CD and GH are respectively the bisectors of $\angle ACB$ and $\angle EGF$ such that D and H lie on sides AB and FE of $\triangle ABC$ and $\triangle EFG$ respectively.

If $\triangle ABC \sim \triangle FEG$, show that

(i) $\frac{CD}{GH} = \frac{AC}{FG}$ (ii) $\triangle DCB \sim \triangle HGE$ (iii) $\triangle DCA \sim \triangle HGF$

Hint : NCERT Page No. 96 Q.10

16. In figure, DEFG is a square and $BAC = 90^\circ$, show that $DE^2 = BD \times EC$.



Hint : $\triangle BDG \sim \triangle FEC$ (A - A)

17. If sides AB, BC and median AD of $\triangle ABC$ are proportional to the corresponding sides PQ, QR and median PM of $\triangle PQR$, show that $\triangle ABC \sim \triangle PQR$.

Hint : NCERT Page No. 97 Q.12

18. In the given figure, $AD = 3$ cm, $AE = 5$ cm, $BD = 4$ cm, $CE = 4$ cm, $CF = 2$ cm, $BF = 2.5$ cm, then find the pair of parallel lines and hence their lengths.

Hint : $\frac{EC}{EA} = \frac{CF}{FB}$
 $EF \parallel AB$... [Converse of Thales' theorem]

$$\frac{CE}{CA} = \frac{CF}{CB}$$

$$\angle ECF = \angle ACB$$

$$\triangle CFE \sim \triangle CBA$$

ANSWER

1. (B)
2. (B)
3. (C)
4. (C)

5. (B)
6. (A)
18. $EF = \frac{28}{9}$ cm and AB