

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-X

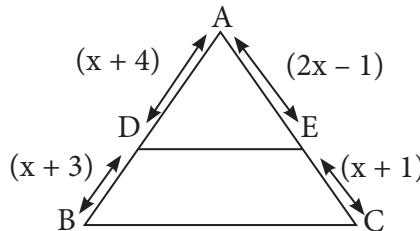
Subject: MATHEMATICS

Chapter Name : Triangles (Chap : 6)

Total : 8 Marks (expected) [MCQ(1)-1 Mark, SA-I(1)-2 Marks, LA(1)-5 Marks]

Level - 2 (Higher Order)

MCQ Type :


1. In the given figure, if $DE \parallel BC$, then the value of x is

(A) $\sqrt{5}$

(B) $\sqrt{6}$

(C) $\sqrt{3}$

(D) $\sqrt{7}$

Hints : Use Basic Proportionality Theorem (Thales Theorem)

2. The perimeters of two similar triangles ABC and PQR are 60 cm and 36 cm respectively. If $PQ = 9$ cm, then AB equals

(A) 6 cm

(B) 10 cm

(C) 15 cm

(D) 24 cm

Hints : $AB : PQ = \text{perimeter of triangle ABC} : \text{perimeter of triangle PQR}$.

3. $\Delta ABC \sim \Delta DEF$. If $AB = 4$ cm, $BC = 3.5$ cm, $CA = 2.5$ cm and $DF = 7.5$ cm, then the perimeter of ΔDEF is

(A) 10 cm

(B) 14 cm

(C) 30 cm

(D) 25 cm

Hints : $AC : DF = \text{perimeter of triangle ABC} : \text{perimeter of triangle DEF}$.

4. ABCD is a trapezium in which $AB \parallel DC$ and P, Q are points on AD and BC respectively such that $PQ \parallel DC$. If $PD = 18$ cm, $BQ = 35$ cm and $QC = 15$ cm, find AD .

(A) 55 cm

(B) 57 cm

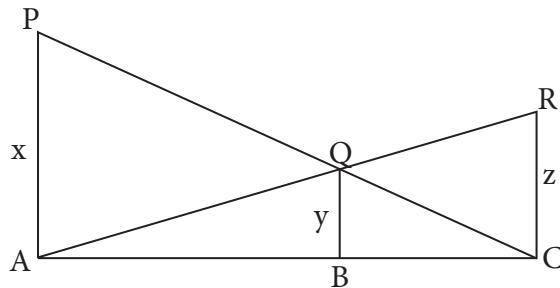
(C) 60 cm

(D) 62 cm

Hints : Join BD which cuts PQ at O. Then apply BP Theorem.

5. If ABCD is parallelogram, P is a point on side BC and DP when produced meets AB produced at L, then select the correct option

(A) $\frac{DP}{BL} = \frac{DC}{PL}$


(B) $\frac{DP}{LP} = \frac{DC}{LB}$

(C) $\frac{DP}{PL} = \frac{BL}{DC}$

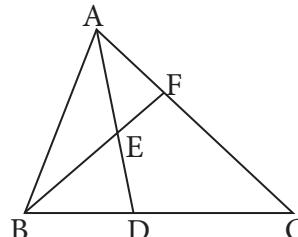
(D) $\frac{DP}{PL} = \frac{AB}{DC}$

Hints : Triangle DPC is similar to triangle LPB.

6. In the given figure, PA, QB and RC are each perpendicular to AC. If $x = 8$ cm and $z = 6$ cm, then y is equal to :

Ⓐ $\frac{56}{7}$ cm

Ⓑ $\frac{7}{56}$ cm


Ⓒ $\frac{25}{7}$ cm

Ⓓ $\frac{24}{7}$ cm

Hints : $\frac{y}{x} = \frac{BC}{AC}$ and $\frac{y}{z} = \frac{AB}{AC}$

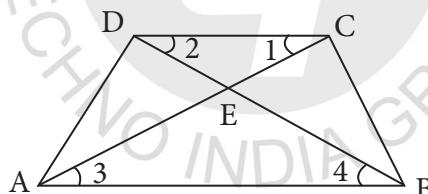
SA-I Type

7. In the figure, AD is median of $\triangle ABC$ and E is the mid-point of AD. If BE is produced to meet AC at F, then prove that $AF = \frac{1}{3} AC$.

Hints : Draw DG parallel to BF which cuts AC at G. Apply BP theorem on triangle BFC and triangle ADG.

8. M and N are points on the sides PQ and PR respectively of a $\triangle PQR$. State whether $MN \parallel QR$ if $PM = 4$ cm, $QM = 4.5$ cm, $PN = 4$ cm, $NR = 4.5$ cm.

Hints : Apply converse of BP theorem.

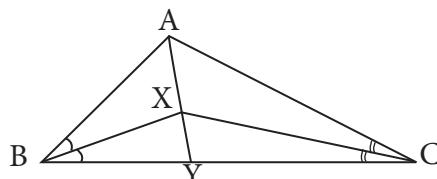

9. In the given figure, ABCD is a trapezium with $AB \parallel DC$, E and F are the points on non-parallel sides AD and BC respectively such that $EF \parallel AB$. Prove that $\frac{AE}{ED} = \frac{BF}{FC}$.

Hints : Join AC which cuts EF at O. Then apply BP Theorem.

10. In given figure $\angle 1 = \angle 3$, $\angle 2 = \angle 4$

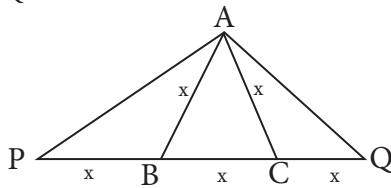
$DE = 4$; $CE = x + 1$, $AE = 2x + 4$; $BE = 4x - 2$, find x.

Hints : $\triangle ABE \sim \triangle CDE$ (A - A)


11. Any point X is taken on the side BC of a triangle ABC and XM, XN are drawn parallel to BA, CA meeting CA, BA at M and N respectively. MN meets CB produced in T.

Prove that: $TX^2 = TB \times TC$.

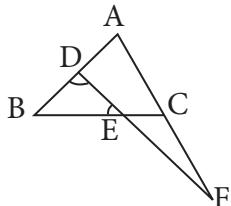
Hints : $\frac{TN}{TM} = \frac{TB}{TX}$ and $\frac{TN}{TM} = \frac{TX}{TC}$


12. Bisector of $\angle B$ and $\angle C$ in $\triangle ABC$ meet each other at X. Line AX cuts the side BC in Y. Prove that

$$\frac{AX}{XY} = \frac{AB + AC}{BC}$$

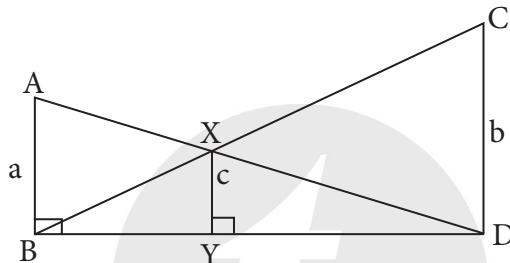
Hints : $\frac{AB}{BY} = \frac{AX}{XY} = \frac{AC}{CY}$

13. In the given figure ABC is an equilateral Triangle, whose each side measures x units. P and Q are two points on BC produced such that $PB = BC = CQ$.

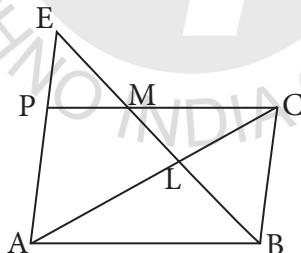


Prove that : (a) $\frac{PQ}{PA} = \frac{PQ}{PB}$

(b) $PA^2 = 3x^2$


Hints : $\triangle APB \sim \triangle QPA$ (A - A)

14. In the figure, $\angle BED = \angle BDE$ and E is the middle point of BC. Prove that $\frac{AF}{CF} = \frac{AD}{BE}$.


Hints : Draw CG parallel to AB which cuts DF at G. $\triangle BED \sim \triangle CEG$ (A - A), $\triangle ADF \sim \triangle CGF$ (A - A)

15. In the figure, $\angle ABD = \angle XYD = \angle CDB = 90^\circ$, $AB = a$, $XY = c$ and $CD = b$, then prove that $c(a + b) = ab$.

Hints : $\frac{c}{a} = \frac{YD}{BD}$ and $\frac{c}{b} = \frac{BY}{BD}$

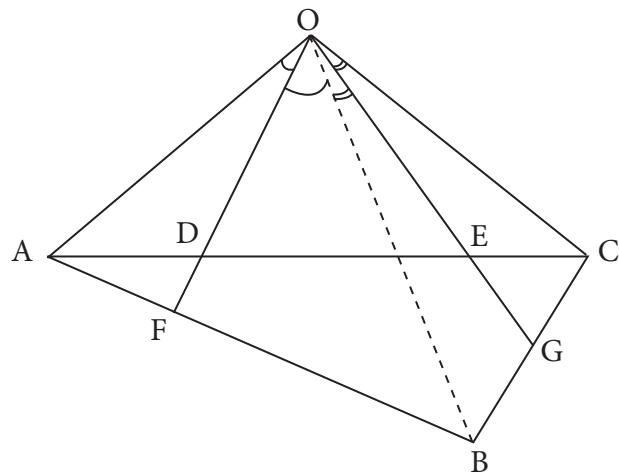
16. In the parallelogram ABCD, middle point of CD is M. A line segment BM is drawn which cuts AC at L and meets AD extended at E. Prove that $EL = 2BL$.

Hints : $DE = AD$, $\triangle AEL \sim \triangle CBL$ (A - A)

17. Prove that if two sides and a median bisecting the third side of a triangle are respectively proportional to the corresponding sides and the median of another triangle, then the two triangles are similar.

Hints : NCERT Page No. 97 Q.14.

18. A quadrilateral OABC in which $OA = OC$. The bisector of $\angle AOB$ meets AC at D and AB at F and the bisector of $\angle COB$ meets AC at E and BC at G. Prove that $\triangle ODE \sim \triangle OFG$.


Hints : $OA : OB = AF : BF$

$OC : OB = CG : BG$

$AF : BF = CG : BG$

Apply converse of BP theorem.

$\triangle ODE \sim \triangle OFG$ (A - A).

ANSWER

1. (D)	5. (B)
2. (C)	6. (D)
3. (C)	8. yes, $MN \parallel QR$
4. (C)	10. 3

