

TECHNO INDIA GROUP PUBLIC SCHOOL

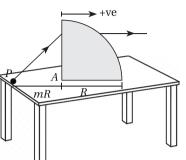
Dt. 10-03-2025

JEE Main Mock Test -1 (2025)

Time Allowed: **3 hours** Maximum Marks: **300**

General Instructions:

- 1. There are three subjects in the question paper consisting of Physics (Q. no. 1 to 25), Chemistry (Q, no. 26 to 50), and Mathematics (Q. no. 51 to 75).
- Each subject is divided into two sections. Section A consists of 20 multiple-choice questions & Section
 B consists of 5 numerical value-type questions.
- 3. There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice questions and zero marks will be awarded for not attempted questions.
- 4. For Section B questions (Integer type), 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice questions and zero marks will be awarded for not attempted questions.
- 5. Any textual, printed, or written material, mobile phones, calculator etc. is not allowed for the students appearing for the test.
- 6. All calculations/written work should be done in the rough sheet, provided with the Question Paper.



	Physics	
	SECTION-A	
1.	Consider the ratio $x = \frac{(1-y)}{(1+y)}$ to be determined by measuring a dimensionless quantity <i>y</i> . If the	[4]
	error in the measurement of <i>y</i> is Δy ($\Delta y/y \ll 1$), then what is the error Δx in determining <i>x</i> ?	
	$ \bigcirc \frac{\Delta y}{(1+y)^2} \qquad \bigcirc \frac{-2\Delta y}{(1+y)^2} $	
2.	A ball is thrown upward with an initial velocity v_0 from the surface of the earth. The motion of the ball is affected by a drag force equal to mkv (where m is mass of the ball, k is constant). Time taken by the ball to rise to its highest height is	[4]
3.	A large heavy container is sliding without friction down a smooth plane of inclination θ . From a point P on the bottom of box, a particle is projected with respect to box is u and the direction of projection makes an angle α with the bottom. Then PQ =	[4]
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4.	In this arrangement in the figure, the ends P and Q of the unstretchable string moves downwards with uniform speed u . Mass M moves upwards with a speed	[4]
	A θ θ Q	
	① $u\cos\theta$ ② $2u\cos\theta$ ③ $u\sin\theta$ ④ $u/\cos\theta$	

5.	System shown in figure is in equilibrium and at rest. The spring and string are massless, now the	[4]
	string is cut. The acceleration of mass $2m$ and m just after the string is cut will be	
	2m	
	*	
	\overline{m}	
	① g/2 upwards, g downwards ② g upwards, g/2 downwards	
	 3 g upwards, 2g downwards 4 2g upwards, g downwards 	
6.	A circular disc with a groove along its diameter is	[4]
	placed horizontally. A block of mass 1 kg is placed	
	as shown. The coefficient of friction between the block and all surfaces of groove in contact is $\mu = \frac{\cos \theta = 4/5}{\sin \theta = 3/5}$	
	block and all surfaces of groove in contact is $\mu = \frac{1}{2}$ $\sin \theta = 3/5$ $\sin \theta = 3/5$ $\sin \theta = 3/5$	
	acceleration of the block with respect to disc is	
	acceptation of the proof man respect to the	
	① 6 m/s^2 ② 10 m/s^2 ③ 8 m/s^2 ④ 4 m/s^2	
7.	A time dependent force $F = 6t$ acts on a particle of mass 1 kg. If the particle starts from the rest,	[4]
	the work done by the force during the first 1 s will be	
	① 22 J ② 9 J ③ 18 J ④ 4.5 J	
8.	A particle is moving in a circular path of radius <i>a</i> under the action of a attractive potential energy	[4]
	$H = -\frac{k}{k}$ Its total energy is	
	$U = -\frac{k}{2r^2}$. Its total energy is	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$2a^2$ $4a^2$ $2a^2$	
9.	A man (mass = 50 kg) and his son (mass = 20 kg) are standing on a frictionless surface facing	[4]
	each other. The man pushes his son, so that he starts moving at a speed of 0.70 m/s with respect	
	to the man. The speed of the man with respect to the surface is	
	① 0.28 ms^{-1} ② 0.20 ms^{-1} ③ 0.47 ms^{-1} ④ 0.14 ms^{-1}	
10.	A disc of mass M and radius R is rolling with angular speed ω on a horizontal plane as shown.	[4]
	The magnitude of angular momentum of the disc about the origin <i>O</i> is	r -1
	$M \sim M \sim$	
	$\bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad MR^2\omega \qquad \qquad \bigcirc \qquad MR^2\omega \qquad \qquad \bigcirc $	
	$(2)^{m}$	

11.	The position of a particle of mass $m=2$ kg is given by $r(t)=2t\hat{i}-3t^2\hat{j}$. Its angular momentum, with respect to the origin, at time $t=2$ s is	[4]
	① $36\hat{k}$ ② $-34(\hat{k}-\hat{i})$ ③ $-48\hat{k}$ ④ $48(\hat{i}+\hat{j})$	
12.	A spherically symmetric gravitational system of particles has a mass density	[4]
	$ \rho = \rho_0 \text{for} r \le R $	
	= 0 for r > R	
	where ρ_0 is a constant. A test mass can undergo circular motion under the influence of the gravitational field of particles. Its speed v as a function of distance r from the centre of the system is represented by	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
13.	A long cylinder vessel is half filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 revolutions per second, then the difference in the heights between the centre and the sides (in cm) will be	[4]
	① 0.1 ② 1.2 ③ 0.4 ④ 2.0	
14.	A simple pendulum has time period T_1 . The point of suspension is now moved upward according to the relation $y = kt^2$ where $(k = 1 \text{ m/s}^2)$, y is the vertical displacement. The time period is now T_2 . The ratio of $\frac{T_1^2}{T_2^2}$ is (take $g = 10 \text{ m/s}^2$)	[4]
	① 6/5 ② 5/6 ③ 1 ④ 4/5	
15.	Four harmonic waves of equal frequencies and equal intensities I_0 have phase angle $0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi$. When they are superposed, the intensity of resulting wave is nI_0 . Then n is	[4]
16.	Parallel rays of light of intensity $I=912~\text{w/m}^2$ are incident on a spherical black body kept in surroundings of temperature 300 K. Take Stefan constant $\sigma=5.7\times10^{-8}~\text{wm}^{-2}\text{k}^{-4}$ and assume that the energy exchange with the surroundings is only through radiation. The final steady state temperature of the black body is close to	[4]
	① 330 K ② 660 K ③ 990 K ④ 1550 K	
17.	An ideal gas is taken through the cycle $A \to B \to C \to A$, as shown in the figure. If the net heat supplied to the gas in the cycle is 5 J, the work done by the gas in the process $C \to A$ is 1 -5 J 2 -10 J 3 -15 J 4 -20 J $P(N/m^2)$	[4]

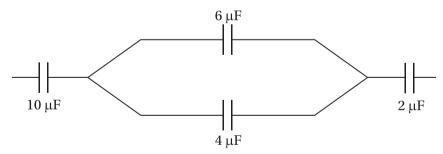
A quarter cylinder of radius R and refractive index 1.5 is placed on a table. A point object P is kept at a distance of mR from it. The value of m for which a ray from P will emerge parallel to the table as shown in figure.

- 3/4 (1)
- 2 4/3
- (3) 3/2
- (4) 2

Space between two concentric conducting spheres of radii a and b (b > a) is filled with a medium of resistivity ρ . The resistance between the two spheres will be

[4]

- $\bigcirc \qquad \frac{\rho}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right) \qquad \bigcirc \qquad \frac{\rho}{4\pi} \left(\frac{1}{a} \frac{1}{b} \right) \qquad \bigcirc \qquad \bigcirc \qquad \frac{\rho}{2\pi} \left(\frac{1}{a} \frac{1}{b} \right) \qquad \bigcirc \qquad \bigcirc \qquad \frac{\rho}{4\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$


Charge is distributed within a sphere of radius R with a volume charge density $\rho(r) = \frac{A}{r^2} e^{-2r/a}$, [4] where A and a are constants. If Q is the total charge of the charge distribution, the radius R is

[4]

- $\bigcirc 1 \qquad a \log \left[\frac{1}{1 \frac{Q}{2\pi aA}} \right] \qquad \bigcirc 2 \qquad a \log \left(1 \frac{Q}{2\pi aA} \right) \qquad \bigcirc 3 \qquad \frac{a}{2} \log \left(1 \frac{Q}{2\pi aA} \right) \qquad \bigcirc 4 \qquad \frac{a}{2} \log \left[\frac{1}{1 \frac{Q}{2\pi aA}} \right]$

SECTION-B

In the figure shown below, the charge on the left plate of the 10 μF capacitor is -30 μC . The [4]charge on the right plate of the 6 μF is ___

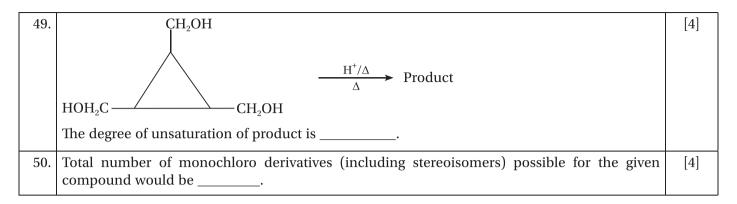
Two identical wires A and B, each of length l, carry the same current I. Where A is bent into [4] a circle of radius R and wire B is bent to form a square of side a. If B_A and B_B are the values of

magnetic field at the centres of circle and square respectively then $\frac{\pi^2}{\sqrt{2}} \left(\frac{B_B}{B_A} \right)$ is ______,

In a coil of resistance 100 Ω , a current is induced by changing [4]**▲** current (A) the magnetic flux through it as shown in the figure. The 10 magnitude of change in flux through the coil is (wb) ➤ time 0 0.5 A hydrogen atom, initially in the ground state is excited by absorbing a photon of wavelength 980 [4] Å . The radius of the atom in the excited state in terms of Bohr radius is ka_0 . (Take hc = 12500 ev- Å). Then k is _____ (radius of Bohr orbit is a_0) The half-life of ²¹⁵At is 100 μ s. The time taken for the activity of a sample of ²¹⁵At to decay to $\frac{1}{16}$ th [4] of its initial value is (μs) _

Chemistry

SECTION-A


26	What are the formal charges on 'P' and 'M' respectively in the given structure?	[4]
26.	What are the formal charges on ' B ' and ' N ' respectively in the given structure?	[4]
	$H \longrightarrow N \longrightarrow H$	
	H	
	OH/ND/A	
	① $-1, +1$ ② $+1, 0$ ③ $-2, +2$ ④ $0, 0$	
27.	The sequence that correctly describes the relative bond strengths partaining to oxygen molecule	[4]
	and its cation or anion is	
	① $O_2^{2-} > O_2^- > O_2^- > O_2^+$ ② $O_2 > O_2^+ > O_2^- > O_2^{2-}$	
	$ (3) O_2^+ > O_2 > O_2^{2-} > O_2^{-} $ $ (4) O_2^+ > O_2 > O_2^{-} > O_2^{2-} $	
28.	Among the following which one of the following is the highest acidic in nature?	[4]
	① CH ₃ CH ₂ CH ₂ —CH ₂ —CH ₃ ②	
	① CH ₃ CH ₂ CH ₂ —CH ₂ —CH ₃ ②	
	(3) / \ (4) \ (5)	
29.	The number of stereoisomers obtained by bromination of tran-2-butene is	[4]
	① 1 ② 2 ③ 3 4 4	

The potential energy of electron present in the ground state of Li ²⁺ ion is represented by	[4]
$+3e^{2}$ $-3e$ $-3e^{2}$ $-3e^{2}$	
$\bigcirc 1 \qquad \boxed{2} \qquad \boxed{4\pi\epsilon_0 r} \qquad \boxed{3} \qquad \boxed{4\pi\epsilon_0 r^2} \qquad \boxed{4} \qquad \boxed{4\pi\epsilon_0 r}$	
The first of the f	
If the radius of first orbit of H-atom is a_0 , then de-Broglie wavelength of electron 4^{th} orbit is	[4]
a_0	
$\boxed{\bigcirc 8\pi a_0} \qquad \boxed{\bigcirc \frac{-6}{4}} \qquad \boxed{\bigcirc 3} 16a_0 \qquad \boxed{\bigcirc 4} 2\pi a_0$	
A compound made up of two elements A and B is found to contain 25% A (atomic mass = 12.5)	[4]
and 75% B (atomic mass = 37.5). The simplest formula of the compound is	
Calculate the degree of dissociation of PCl ₅ , the density at 230°C is 70.	[4]
① 97.8% ② 48.9% ③ 4.89% ④ 24.49	
Calculate the pH of 0.5 M agueous solution of NaCN, the pk, of CN is 4.70	[4]
	. ,
	F - 1
	[4]
() -44 KCal	
	[4]
	[4]
(1) $-\text{ve}, > 1, -\text{ve}$ (2) $-\text{ve}, < 1, -\text{ve}$ (3) $+\text{ve}, > 1, -\text{ve}$ (4) $-\text{ve}, > 1, +\text{ve}$	
The Van't Hoff factor for 0.1 (M) Ba(NO ₃) ₂ solution is 2.74. The degree of dissociation is	[4]
① 91.3% ② 87% ③ 100% ④ 74	
The density of 3 M solution of sodium chloride is 1.252 g (mL) ⁻¹ . The molarity of the solution	[4]
will be [molar mass, NaCl = $58.5 \text{ g (mol)}^{-1}$]	. ,
① 2.60 m ② 2.18 m ③ 2.79 m ④ 3.00 m	
Indicate in which of the following processes, the nitrogen is reduced?	[4]
	[-]
In the reaction :	[4]
$VO + Fe_2O_3 \rightarrow FeO + V_2O_5$, what is the <i>n</i> -factor for V_2O_5 ?	
① +2 ② +4 ③ +6 ④ +8	
Given, $E_{Cr^{3+}/Cr}^{0} = -0.72 v$, $E_{Fe^{2+}/Fe}^{0} = -0.42 v$. The potential for the cell :	[4]
$Cr Cr^{3+}(0.1 \text{ M}) Fe^{2+}(0.01 \text{ M}) $ Fe is :	
① -0.339 v ② -0.26 v ③ +0.26 v ④ +0.339 v	
	① $\frac{+3e^2}{4\pi\epsilon_0 r}$ ② $\frac{-3e}{4\pi\epsilon_0 r}$ ③ $\frac{-3e^2}{4\pi\epsilon_0 r^2}$ ④ $\frac{-3e^2}{4\pi\epsilon_0 r}$ If the radius of first orbit of H-atom is a_0 , then de-Broglie wavelength of electron 4^{th} orbit is ① $8\pi a_0$ ② $\frac{a_0}{4}$ ③ $16a_0$ ④ $2\pi a_0$ A compound made up of two elements A and B is found to contain 25% A (atomic mass = 12.5) and 75% B (atomic mass = 37.5). The simplest formula of the compound is ① AB ② AB_2 ③ AB_3 ④ A_3B ② AB_3 ④ A_3B ② AB_3 ④ A_3B ② AB_3 ② AB_3 ④ A_3B ② AB_3 ② AB_3 ④ A_3B ③ AB_3 ② AB_3 ② AB_3 ④ A_3B ③ AB_3 ③ AB_3 ③ AB_3 ④ A_3B ○ AB_3 ② AB_3 ② AB_3 ④ A_3B ○ AB_3 ③ AB_3 ③ AB_3 ④ A_3B ○ AB_3 ③ AB_3 ④ A_3B ○ AB_3 ② AB_3 ④ A_3B ○ AB_3 ② AB_3 ④ A_3B ○ AB_3 ③ AB_3 ④ A_3B ○ AB_3 ③ AB_3 ④ A_3B ○ AB_3 ④ A_3B ○ AB_3 ② AB_3 ④ A_3B ○ AB_3 ④

42.	$Br \xrightarrow{\qquad \qquad} Cl \xrightarrow{\qquad Mg/Ether \qquad} B \xrightarrow{\qquad D_2O \qquad} C$	[4]
	(A) Na ether (with two moles of A) Na ether (with two moles of C)	
	D and E are respectively :	
	$ \bigcirc \hspace{1cm} C \\ $	
	$ \bigcirc \hspace{0.2in} Cl \hspace{0.2in} and \hspace{0.2in} D \hspace{0.2in} $	
	None of the above	
43.	The correct order of strengths of the carboxylic acids is :	[4]
	СООН	
	$(I) \qquad \qquad (III) \qquad \qquad (III)$	
44.	In chromic acid anhydride (CrO_3), Cr has d° configuration but it is bright orange coloured solid, the colour is due to	[4]
	① $d-d$ -transition ② Charge transfer $(L \to M)$ transition	
	③ Charge transfer $(M \to L)$ transition ④ $p-d$ -transition	F - 2
45.	The reagents used in the preparation of aspirin from salicylic acid is	[4]
	① SOCl ₂ , Pyridine ② CH ₃ COOH, HCl ③ CH ₃ Cl, AlCl ₃ ④ (CH ₃ CO) ₂ O, H ⁺	

SECTION-B

46.	A current of 3 ampere has to be passed through a solution of $AgNO_3$ solution to coat a metal surface of 80 cm ² with 0.005 mm thick layer for a duration of approximately y^3 seconds. What is the value of y ? (Density of Ag is 10.5 g/cm ³)	
47.	The number of chiral carbon in one molecule of α -D(+) glucose is	[4]
48.	What is the maximum number of compounds with the molecular formula $C_4H_{11}N$ which give an alkali soluble precipitate with benzyl sulphonyl chloride?	[4]

Mathematics

SECTION-A

51.	In a triangle ABC, D is the midpoint of BC and AD is perpendicular to AC. Then cosA cosC =	[4]
	$\bigcirc \qquad \frac{3(c^2+a^2)}{2ca} \qquad \qquad \bigcirc \qquad \frac{b^2-a^2}{2ab}$	
52.	For what values of x , the given function $f(x)$ non differentiable or discontinuous?	[4]
	$f(x) = \begin{cases} 1-x, & x < 1 \\ (1-x)(2-x), & 1 \le x \le 2 \\ 3-x, & x > 2 \end{cases}$	
	① $x = 1$ ② $x = 2$ ③ Both (a) and (b) ④ None of these	
53.	Let, $f(x) = f(x) = \frac{x-1}{x+1}$	[4]
	$f^{2}(x) = f(f(x)), f^{3}(x) = f\{f^{2}(x)\}$	
	$f^{k+1}(x) = f.\{f^k(x)\}\$ for $k = 1, 2, 3,$	
	Then $ f^{1999}(2) $ is?	
	① -2 ② -3 ③ -1 ④ 0	
54.		[4]
	① 1 ② 2 ③ 3 ④ Infinite	
55.	Let $f:(0,\infty)\to R$ be a differentiable function such that x $f'(x)+f(x)-2x=0 \ \forall \ x\in(0,\infty)$ and $f(1)\neq 1$. Then	[4]
	$ \lim_{x \to 0^{+}} f'\left(\frac{1}{x}\right) + xf\left(\frac{1}{x}\right) = 1 $	
	$\lim_{x \to 0^{+}} x^{2} f'(x) = 0 \qquad (4) f(x) \le 2 \text{ for all } x \in (0,2)$	

56.	A curve is such that the length of tangent intercept between point of contact and x-axis is 1.	[4]
	Then the equation of the curve is	
	1 $\log \left \frac{1 - \sqrt{1 - y^2}}{y} \right + \sqrt{1 - y^2} = x + c$ 2 $\log \left \frac{y}{1 - \sqrt{1 - y^2}} \right + \sqrt{1 - y^2} = x + c$	
	3 Both (a) and (b)4 None of these	
57.	If λ is minimum positive value of $f(x)$ for which the derivative of $e^{f(x)} \sin f(x)$ is zero, $(f'(x) > 0)$,	[4]
37.	then $[\lambda]$ is where $[x]$ represents greatest integer function.	[4]
	① 2.355 ② 3 ③ 2 ④ 3.456	
58.	Let the coefficients of p^{th} , $(p + 1)^{th}$ and $(p + 2)^{th}$ terms in the binomial expansion of $(1 + y)^n$ are	[4]
	in A.P., then n and p satisfy the equation.	[+]
	① $n^2 - n(4p - 1) + 4p^2 + 2 = 0$ ② $n^2 - n(4p + 1) + 4p^2 - 2 = 0$	
	3 $n^2 - n(4p + 1) + 4p^2 + 2 = 0$ 4 $n^2 - n(4p - 1) + 4p^2 - 2 = 0$	
59.	The value of $\left[\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{\sin x}{x-\sin x}} + \lim_{x\to 1} (x)^{\frac{1}{1-x}}\right]$ is $\frac{m}{e}$. Then m is	[4]
	The value of $\lim_{x\to 0} \left(\frac{1}{x}\right) = \lim_{x\to 1} \left(\frac{1}{x}\right) = \frac{1}{e}$. Then it is	[-]
	1	
	① 2 ② 1 ③ -2 ④ None of these.	[4]
60.	The locus of point P such that angle between pair of tangents drawn from it to the parabola $y^2 = 4ax$ is 45° , is a	[4]
0.1	Let $A = \begin{bmatrix} 1 & 5 & 25 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$. If $B = [b_{ij}]$ is a matrix such that $A^{50} - B = I$, where I is the identity matrix of order 3. Then	F 43
61.	Let $A = \begin{bmatrix} 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$. If $B = [b_{ij}]$ is a matrix such that $A^{50} - B = I$, where I is the identity matrix of order 3. Then	[4]
	$a(b_{13}) + 2b_{23}$ equals	
	$2\left(\frac{b_{13}}{b_{12}}\right) + \frac{2b_{23}}{b_{12}}$ equals	
	① 255 ② 256 ③ 257 ④ 0	
62.	Let the normal makes an angle θ with x-axis intersect the axis of parabola $y^2 = 8ax$ at a distance	[4]
	of 8a from the focus and which is not parallel to either of the axis, then θ is equal to	
	① $\pi/6$ ② $\pi/4$ ③ $\pi/3$ ④ None of these	
	\mathbf{v}^2 \mathbf{v}^2	r . 1
63.	Consider the horizontal ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. From any point P on the ellipse a line Parallel to	[4]
	y-axis is drawn to intersect the auxiliary circle at Q. Find the locus f point R such that PR : RQ =	
	r : s. [P and Q lie on the same side of x-axis].	
	$(1, 1)^2$ $(1, 1)^2$	
	① $\frac{(r+s)^2}{(ra+sb)^2}x^2 + \frac{y^2}{b^2} = 1$ ② $\frac{x^2}{a^2} + \frac{(r+s)^2}{(ra+sb)^2}y^2 = 1$ ③ $x^2 + y^2 = (a+5b)^2$ ④ None of these	
64.	Let z_1 and z_2 be any two complex numbers and a , b , $\in R$, then $\left az_1 + bz_2\right ^2 + \left bz_1 - az_2\right ^2 =$	[4]
	① $(a^2 + b^2)(z_1 ^2 + z_2 ^2)$ ② $(a^2 - b^2)(z_1 ^2 - z_2 ^2)$	
	$3 a^2 + b^2$ 4 None of these	

65.	For the given triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ then	[4]
	① $\cos A : \cos B : \cos C := 19 : 17 : 25$ ② $\cos A + \cos B + \cos C := \frac{35}{51}$	
	(3) $\cos A : \cos B : \cos C := 7 : 19 : 25$ (4) None of these	
66.	The locus of midpoint of chord of contact drawn from any point on the hyperbola $4x^2 - 9y^2 = 36$ to the circle $x^2 + y^2 = 9$ is	[4]
	① $9x^2 + \frac{81y^2}{4} = (x^2 + y^2)^2$ ② $9x^2 - \frac{81y^2}{4} = (x^2 + y^2)^2$	
	(3) $9x^2 - 81y^2 = (x^2 + y^2)^2$ (4) None of these	
67.	Out of 100 cards numbered from 00 to 99, a card is chosen randomly. An event is said to have occurred, if product of digits of the card number is 18. If card is selected 8 times with replacement each time, then the probability that the event occurs exactly three times is	[4]
68.	The number of value of 'b' for which the following system of linear equations $x + y + z = 1$, $x + ay + z = 1$, $ax + by + z = 0$ has no solution, is	[4]
	① 1 ② 2 ③ 0 ④ Infinite	
69.	For the function $f(x) = \frac{x}{2} - 1$, $x \in [0, \pi]$ which of the following is correct. ([x] denotes G.I.F.)	[4]
	① $tan[f(x)] tan[f(x)]$ and $1/f(x)$ are both continuous	
	② $tan[f(x)]$ and $1/f(x)$ are both discontinuous	
	3 $tan[f(x)]$ and $f^{-1}(x)$ are both continuous	
	4 tan[f(x)] is continuous but $1/f(x)$ is discontinuous	
70.	Let R be the real line. Consider the following subsets of the plane $R \times R$:	[4]
	$A = \{(x, y) : y = x + 2 \text{ and } 0 < x < 3\}$	
	$B = \{(x, y) : x - y \text{ is an integer}\}.$	
	Which one of the following is true ?	
	① B is an equivalence relation on R but A is not	
	② neither A nor B is an equivalence relation on R	
	③ both A and B are equivalence relations on R	
	A is an equivalence relation on R but B is not	
	-	

SECTION-B

71. Find the natural number 'a' for which
$$\sum_{k=1}^{n} f(a+k) = 32(2^{n}-1)$$
, where the function 'f' satisfies the relation $f(x+y) = f(x)$ $f(y)$ for all natural numbers x , y and further $f(1) = 2$.

72.	The perpendicular tangents are drawn from a point to the ellipse $x^2 + 3y^2 = 6$. The chord of contact touches a circle concentric with the given ellipse. The sum of the maximum and minimum areas of the circles is πk . Find k.	[4]
73.	If ${}^{1}P_{1}$ + 2. ${}^{2}P_{2}$ + 3. ${}^{3}P_{3}$ + + 15. ${}^{15}P_{15}$ + 16 ${}^{16}P_{16}$ = ${}^{q}P_{r-s}$, where $0 \le s \le 1$, then for $q \ne r$ the value of ${}^{q+s}C_{r-s}$ is	[4]
74.	The box of nine times of volume enclosed by the planes $ 4x-5 + 3y-4 + z+5 =4$ is	[4]
75.	The number of values of x such that $\sin^{-1} 2x + \cos^{-1} x = \frac{\pi}{3}$ is	[4]

