

Solution

Physics

1. ©

Angle of deviation $=180^{\circ}-2 \mathrm{i}$ where $\mathrm{i}=60^{\circ}$
2. (D)
image is virtual, erect, magnified, behind the mirror
3. (B)

At focus
4. (B)
as object distance is large, image will form at focus
5. (B)
as, ri of water with respect to air \times ri of air with respect to water $=1$
6. ©
$\sin i=1 /($ ri of water $)=3 / 4=0.75 ; i=49^{\circ}$
7. (A)
apparent depth $=(\mathrm{d} / \mu)+(\mathrm{d} / 2 \mu)$
8. ©

Different
9. (A)

True
10. (A)

Definition of absolute refractive index
11. ©
r.i of water $=4 / 3$
12. (B)
speed of light in water $=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
13. ©

True
14. (B)

Refraction
15. (A)
shifted slightly (parallely)
16. ©

Moon
17. (D)
$180^{\circ}-60^{\circ}=120^{\circ}$
18. ©
independent of medium
19. ©
alternate angle
20. (D)
$(3 / 2) \sin i=(4 / 3) \cdot \sin 90^{\circ}$ as per Snell's law
21. (B)
$2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
22. (A)
$(4 / 3)(2 / 3)=8 / 9$
23. (A)
as, wavelength of red light > wavelength of violet light
24. ©
90°
25. ©
$\sin \mathrm{i}=\mu \sin \mathrm{r}$ and $\mathrm{r}+\mathrm{i}=90^{\circ}$
$\Rightarrow>\sin \mathrm{i}=\mu \sin \left(90^{\circ}-\mathrm{i}\right)=\mathrm{u} \cdot \cos \mathrm{i}$
$\Rightarrow>\tan \mathrm{i}=\mu=$ required refractive index

Chemistry

26. (D)

$$
\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \uparrow
$$

27. (A)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}$ (white) $+\mathrm{H}_{2} \mathrm{O}$
28. ©

Acidic medium	p^{H} scale	
	Neutral medium	

29. ©
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
Polyprotic acid
30. ©

Aqua regia : Concentrated HNO_{3} and concentrated HCl at the ratio of $1: 3$
31. (B)

Hydrochloride acid is formed inside human stomach
32. (B)
p^{H} of blood is 7.4
33. ©
$\mathrm{Zn}+2 \mathrm{NaOH} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
$\mathrm{Na}_{2} \mathrm{ZnO}_{2}$ is sodium zincate
34. (D)
$\mathrm{Mg}(\mathrm{OH})_{2}$ is one of the major components of antacids
35. ©

Indicators show different colours in acidic, basic and neutral medium
36. ©

Phenolphthalein shows the following colours in different medium
Acidic medium-colourless, basic medium-pink, neutral medium-colourless
37. (D)

Both NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ produce CO_{2} gas with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
38. (A)
CaOCl_{2} readily releases oxygen and hence it acts as an oxidising agent
When ant-string touches human body then formic acid enters and that can be neutralised by $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
2 \mathrm{HCOOH}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow(\mathrm{HCOO})_{2} \mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O}
$$

39. (D)

NaOH is stronger alkali than $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$ is one of the components of antacids
40. (B)
41. (B)
CH_{4} is a highly inflamable gas and the equation is $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
42. (D)
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
Form the above equations, it is clear that the charges of the cations and anions remain same. Hence, neither of them face oxidation or reduction.
43. (D)

Curd starts to react with the inner wall of the container.
44. (A)
$\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
As the compound is releasing only one H^{+}ion so, it is a monobasic acid
45. (D)

$$
\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \xrightarrow{\text { room temperature }} \underset{\text { (white) }}{\mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaCl}}
$$

46. (B)

$$
\mathrm{SO}_{2}+2 \mathrm{NaOH} \longrightarrow \underset{\text { (salt) }}{\longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}}
$$

47. (B)

Blue vitriol - $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Baking soda - NaHCO_{3}
Washing soda - $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Gypsum - $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
48. (B)
$\mathrm{Pb}(\mathrm{OH}) \mathrm{Cl}$ is a basic salt as one -OH group is present in the molecule
49. (A)

$$
\underset{\text { (weak base) }}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{\text { (strongacid) }}{\mathrm{HCl}} \xrightarrow{\text { room temperature }} \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

50. ©

Glauber salt : $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Mathematics

51. ©

$$
\begin{gathered}
(4 K)^{2}-4.16 .9=0 \\
K^{2}-36=0 \\
K= \pm 6
\end{gathered}
$$

52. (A)

$$
\begin{array}{ll}
2 a+3=0 & 2+b=0 \Rightarrow b=-2 \\
a=-3 / 2 & a b=-\frac{3}{2} \times-2=3
\end{array}
$$

53. (A)

$$
\begin{aligned}
& \frac{\lambda-4}{4}=1 \\
& \Rightarrow \lambda-4=4 \\
& \Rightarrow \lambda=8
\end{aligned}
$$

54. (B)

$$
\begin{aligned}
& x^{2}+4 k x+k^{2}-k+2=0 \\
& \therefore 16 k^{2}-4\left(k^{2}-k+2\right)=0 \\
& \Rightarrow 3 k^{2}+k-2=0 \\
& \Rightarrow(k+1)(3 k-2)=0 \\
& \Rightarrow k=-1, \frac{2}{3}
\end{aligned}
$$

55. ©

$$
a x^{2}+b x+c=0
$$

$\alpha, 3 \alpha$

$$
\begin{align*}
& 3 \alpha^{2}=\frac{c}{a} \tag{1}\\
& 4 \alpha=-\frac{b}{a} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \alpha^{2}=\frac{b^{2}}{16 a^{2}} \\
& \alpha^{2}=\frac{c}{3 a} \\
& \therefore \frac{b^{2}}{16 \not^{2} a}=\frac{c}{3 \not a} \\
& \Rightarrow \frac{b^{2}}{a c}=\frac{16}{3}
\end{aligned}
$$

56. (D)

$$
\begin{aligned}
& 4-2 a+12=0 \\
& \Rightarrow 2 a=16 \\
& \Rightarrow a=8 \\
& a^{2}-4 \cdot 1 \cdot q=0 \\
& 4 q=a^{2}=64 \\
& \therefore q=16
\end{aligned}
$$

57. (B)

$$
\begin{aligned}
& \text { Let } y=\sqrt{6+\sqrt{6+\sqrt{6+}}} \\
& \quad y^{2}=6+y \quad(y \text { is positive }) \\
& \Rightarrow y^{2}-y-6=0 \\
& \Rightarrow y^{2}-3 y+2 y-6=0 \\
& \Rightarrow(y-3)(y+2)=0 \\
& \quad y=3, y=-2
\end{aligned}
$$

58. (B)

For $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

59. (A)

$$
\begin{aligned}
& \alpha+\beta=\frac{1}{\alpha \beta} \\
& \Rightarrow-\frac{b}{a}=\frac{a}{c} \Rightarrow-b c=a^{2} \Rightarrow a^{2}+b c=0
\end{aligned}
$$

60. (B)

For $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

For real and distinct roots discriminant D should be positive ($D=b^{2}-4 a c$)
61. ©
$y=0$ at two points $(-4,0)$ and $(2,0)$
62. (A)

$$
(2 y-1)^{2}=0 \text { or } y=\frac{1}{2} \text { and } \frac{1}{2}
$$

\therefore difference of the roots $=0$
or Discriminant $=0$

$$
\therefore \alpha=\beta \Rightarrow \alpha-\beta=0
$$

63. (A)

$$
\begin{aligned}
& \alpha+\beta=\frac{7}{4}, \alpha \beta=\frac{3}{4} \\
& \begin{aligned}
\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} & =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{2}}{\alpha \beta}-2 \\
& =\frac{(7 / 4)^{2}}{(3 / 4)}-2 \\
& =\frac{4}{3} \times \frac{49}{4 \times 4}-2=\frac{49-24}{12} \\
& =\frac{25}{12}
\end{aligned}
\end{aligned}
$$

64. ©

$$
\begin{aligned}
& \alpha=3+\sqrt{5}, \therefore \beta=3-\sqrt{5} \\
& \therefore x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
& \Rightarrow x^{2}-6 x+(9-5)=0 \\
& \Rightarrow x^{2}-6 x+4=0
\end{aligned}
$$

65. (A)

$$
D=2^{2}-4(-3)(-8)=4-96=-92
$$

66. (B)

$$
\begin{aligned}
& 2(-a)^{2}+2 a(-a)+5(-a)+10=0 \\
\Rightarrow & 2 a^{2}-2 a^{2}-5 a+10=0 \\
\Rightarrow & 5 a=10 \\
\Rightarrow & a=2
\end{aligned}
$$

67. ©

$$
(-4)^{2}-(-4)-2 k-2=0 \Rightarrow k=9
$$

68. ©
$6 x-k y+16=0,3 x-y+8=0$
or $3 x-\frac{k y}{2}+8=0$
$\therefore-\frac{k}{2}=-1$
$\Rightarrow k=2$
69. (D)

Number $(x y)$ is $10 x+y$

$$
\begin{align*}
& x+y=9 \tag{1}\\
& 10 x+y+27=10 y+x \\
& \Rightarrow \quad y-x=3 \tag{2}
\end{align*}
$$

by solving (1) \& (2) we get $x=3, y=6$
Therefore number is 36 .
70. (B)

by solving $y=x$ and $x=6$, we get $A B=6$
\therefore Area of triangle $O A B$

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 6 \\
& =18 \text { sq unit. }
\end{aligned}
$$

71. (A)

$$
\begin{aligned}
& (x-5)(45-x-5)=124 \\
& \Rightarrow x^{2}-45 x+324=0
\end{aligned}
$$

72. (B)
$(x-2)^{2}+1=2 x-3$ can be written as
$x^{2}-4 x+4+1=2 x-3$
$\Rightarrow x^{2}-6 x+8=0$
It is in the form of $a x^{2}+b x+c=0$
73. ©

$$
\begin{aligned}
& (x+2)^{3}=x^{3}-4 \\
& \Rightarrow x^{3}+6 x^{2}+12 x+8=x^{3}-4 \\
& \Rightarrow 6 x^{2}+12 x+12=0 \\
& \Rightarrow x^{2}+2 x+2=0 \\
& \quad D=(2)^{2}-4 \cdot(1) \cdot 2 \\
& \quad=4-8=-4
\end{aligned}
$$

74. (D)

We can write $x^{2}+x+8=x^{2}-4$

$$
\Rightarrow x=-12
$$

75. (A)

$$
\begin{aligned}
& x(x+1)=306 \\
& x^{2}+x-306=0 \\
\Rightarrow & x^{2}+18 x-17 x-306=0 \\
\Rightarrow & x(x+18)-17(x+18)=0 \\
\Rightarrow & (x-17)(x+18)=0
\end{aligned}
$$

$x \neq-18$ therefore $x=17$
\therefore two integers are 17,18

Biology

76. (A)

Concentration of solutes in the cell sap is high
Higher concentration of water outside the cell, in the soil, results in entry of water into the root hair by osmosis.
77. ©

Xylem elements get stained showing ascent of sap through them
Xylem channels are routes through which ascent of sap occurs.
78. ©

Sucrose
79. (A)

Increase

Lower atmospheric pressure will increase the rate of evaporation of water vapour from the leaf surface.
80. (A)

When there is high humidity in the atmosphere
Higher humidity will decrease the rate of evaporation of water vapour from the leaf surface.
81. (D)

Potometer
82. (B)

Soil is wet and air is dry
The higher rate of transpiration will be compensated by the higher rate of water absorption from the soil.
83. (D)

All of these
84. (B)

Xylem
85. (A)

Xylem vessel system
Vessels and tracheids
86. (D)

Capillary water
87. (D)

Cohesion Theory
Force of attraction between water molecules ensures the continuity of the chain of water molecules rising through the xylem vessels.
88. (B)

Ascent of sap
Continuous loss of water as water vapour causes ascent of sap through the xylem
89. (B)

Roots to leaves
90. (A)

Food
91. ©

Parasites
92. (D)

Amino acids
93. (B)

Oesophagus
Oesophagus is a part of the human digestive system.
94. (D)

Lactic acid
95. ©

Blood pressure
96. (B)

Lipase and glycerol, respectively
97. (B)

2
Anaerobic respiration causes incomplete breakdown of glucose.

[^0]98. (B)

Between the left atrium and left ventricle
99. (B)

Trachea and bronchi
To prevent them from collapsing when no air flow occurs through them.
100. (A)

Unidirectional
From roots to leaves

[^0]: Techno India Group • DN-25 • Sector-V • Kolkata

