

Monthly Progressive Test

[1]

Class: X

Subject: PCMB

Solution

Physics

1. ©

Angle of deviation = 180° – 2i where i = 60°

2. D

image is virtual, erect, magnified, behind the mirror

3. ®

At focus

4. ®

as object distance is large, image will form at focus

5. ®

as, ri of water with respect to air \times ri of air with respect to water = 1

6. ©

 $\sin i = 1/(ri \text{ of water}) = \frac{3}{4} = 0.75; i = 49^{\circ}$

7. (A)

apparent depth = $(d/\mu) + (d/2\mu)$

8. ©

Different

9. **(**A)

True

10. (A)

Definition of absolute refractive index

11. ©

r.i of water = 4/3

12. ®

speed of light in water = 2.25×10^8 m/s

13. ©

True

14. ®

Refraction

15. (A)

shifted slightly (parallely)

16. ©

Moon

17. D

 $180^{\circ} - 60^{\circ} = 120^{\circ}$

18. ©

independent of medium

19. ©

alternate angle

20. D

 $(3/2) \sin i = (4/3)$. $\sin 90^{\circ}$ as per Snell's law

21. 🕲

 $2 \times 10^8 \, \text{m/s}$

22. **(**A)

(4/3)(2/3) = 8/9

23. **(**A)

as, wavelength of red light > wavelength of violet light

24. ©

90°

25. ©

 $\sin i = \mu \sin r \text{ and } r + i = 90^{\circ}$ $\Rightarrow \sin i = \mu \sin (90^{\circ} - i) = u \cdot \cos i$

$$\Rightarrow$$
 tan i = μ = required refractive index

Chemistry

[3]

26. D

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2 \uparrow$$

27. (A)

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 \uparrow + H_2O$$

$$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3(white) + H_2O$$

28. ©

29. ©

$$H_2SO_4 \Longrightarrow 2H^+ + SO_4^{2-}$$

Polyprotic acid

30. ©

Aqua regia : Concentrated HNO_3 and concentrated HCl at the ratio of 1:3

31. ®

Hydrochloride acid is formed inside human stomach

32. ®

p^H of blood is 7.4

[4]

33. ©

 $Zn + 2NaOH \xrightarrow{\Delta} Na_2ZnO_2 + H_2$

Na₂ZnO₂ is sodium zincate

34. D

 $Mg(OH)_2$ is one of the major components of antacids

35. ©

Indicators show different colours in acidic, basic and neutral medium

36. ©

Phenolphthalein shows the following colours in different medium

Acidic medium-colourless, basic medium-pink, neutral medium-colourless

37. D

Both NaHCO₃ and Na₂CO₃ produce CO₂ gas with dilute H_2SO_4

$$NaHCO_3 + H_2SO_4 \longrightarrow NaHSO_4 + CO_2 + H_2O$$

$$NaHCO_{3} + H_{2}SO_{4} \longrightarrow NaHSO_{4} + CO_{2} + H_{2}O$$
$$Na_{2}CO_{3} + H_{2}SO_{4} \longrightarrow Na_{2}SO_{4} + CO_{2} + H_{2}O$$

38. A

CaOCl₂ readily releases oxygen and hence it acts as an oxidising agent

When ant-string touches human body then formic acid enters and that can be neutralised by $Ca(OH)_2$

 $2HCOOH + Ca(OH)_2 \longrightarrow (HCOO)_2 Ca + 2H_2O$

39. D

NaOH is stronger alkali than $Mg(OH)_2$ and $Mg(OH)_2$ is one of the components of antacids

40. ®

41. ®

 CH_4 is a highly inflamable gas and the equation is $CH_4 + 2O_2 \xrightarrow{\Delta} CO_2 + 2H_2O_3$

42. D

```
NaOH + HCl \longrightarrow NaCl + H_2O
NaOH \longrightarrow Na^+ + OH^-
HCl \longrightarrow H^+ + Cl^-
NaCl \rightarrow Na^{+} + Cl^{-}
```

Form the above equations, it is clear that the charges of the cations and anions remain same. Hence, neither of them face oxidation or reduction.

43. D

Curd starts to react with the inner wall of the container.

44. A

```
CH_3COOH \longrightarrow CH_3COO^- + H^+
```

As the compound is releasing only one H^+ ion so, it is a monobasic acid

45. D

 $\xrightarrow{\text{room temperature}} BaSO_4 \downarrow +2NaCl$ $BaCl_2 + Na_2SO_4 -$ (white)

46. ®

$$SO_2 + 2NaOH \longrightarrow Na_2SO_3 + H_2O$$
(salt)

47. ®

Blue vitriol - CuSO₄.5H₂O Baking soda - NaHCO₃ Washing soda - Na₂CO₃.10H₂O Gypsum - CaSO₄.2H₂O

48. ®

Pb(OH)Cl is a basic salt as one - OH group is present in the molecule

49. A

 $\xrightarrow{room \ temperature} \ NH_4Cl + H_2O$ NH_4OH + HCl (weak base) (strongacid)

50. ©

Glauber salt : $Na_2SO_4.10H_2O$

Mathematics

51. ©

$$(4K)^2 - 4.16.9 = 0$$

 $K^2 - 36 = 0$
 $K = \pm 6$

52. **(**A)

$$2a + 3 = 0$$
 $2 + b = 0 \Rightarrow b = -2$
 $a = -3/2$ $ab = -\frac{3}{2} \times -2 = 3$

$$a = -3/2$$
 $ab = -\frac{3}{2} \times -2 =$

53. **(**A)

 $\frac{\lambda-4}{4} = 1$ $\Rightarrow \lambda - 4 = 4$ $\Rightarrow \lambda = 8$

54. ®

$$4 - 1$$

$$\Rightarrow \lambda - 4 = 4$$

$$\Rightarrow \lambda = 8$$
54. (B)

$$x^{2} + 4kx + k^{2} - k + 2 = 0$$

$$\therefore 16k^{2} - 4(k^{2} - k + 2) = 0$$

$$\Rightarrow 3k^{2} + k - 2 = 0$$

$$\Rightarrow (k + 1)(3k - 2) = 0$$

$$\Rightarrow k = -1, \frac{2}{3}$$
55. (C)

$$ax^{2} + bx + c = 0$$

$$\alpha, 3\alpha$$

$$3\alpha^{2} = \frac{c}{a} \qquad \dots (1)$$

$$4\alpha = -\frac{b}{a} \qquad \dots (2)$$

$$\alpha^{2} = \frac{b^{2}}{16a^{2}}$$
$$\alpha^{2} = \frac{c}{3a}.$$
$$\therefore \frac{b^{2}}{16a^{2}a} = \frac{c}{3a}$$
$$\Rightarrow \frac{b^{2}}{ac} = \frac{16}{3}.$$

56. D

4 - 2a + 12 = 0 $\Rightarrow 2a = 16$ $\Rightarrow a = 8$ $a^{2} - 4 \cdot 1 \cdot q = 0$ $4q = a^{2} = 64$ $\therefore q = 16$

57. ®

$$y = \sqrt{6} + \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots$$

$$y^{2} = 6 + y \qquad (y \text{ is positive})$$

$$y^{2} - y - 6 = 0$$

$$y^{2} - 3y + 2y - 6 = 0$$

$$y = 3, y = -2$$

58. ®

For
$$ax^2 + bx + c = 0$$
,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

59. **(**A)

$$lpha + eta = rac{1}{lpha eta}.$$

 $\Rightarrow -rac{b}{a} = rac{a}{c} \Rightarrow -bc = a^2 \Rightarrow a^2 + bc = 0$

N

IN

60. ®

For $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

For real and distinct roots discriminant *D* should be positive ($D = b^2 - 4ac$)

AGR

61. ©

y = 0 at two points (-4, 0) and (2, 0)

62. **(A**)

$$(2y-1)^2 = 0 \text{ or } y = \frac{1}{2} \text{ and } \frac{1}{2}$$

 \therefore difference of the roots = 0

or Discriminant = 0

$$\therefore \alpha = \beta \implies \alpha - \beta = 0$$

63. **(**A)

$$\alpha + \beta = \frac{7}{4}, \ \alpha\beta = \frac{3}{4}$$

$$\frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^2}{\alpha\beta} - 2$$

$$= \frac{(7/4)^2}{(3/4)} - 2$$

$$= \frac{\cancel{4}}{3} \times \frac{\cancel{49}}{\cancel{4} \times 4} - 2 = \frac{\cancel{49} - \cancel{24}}{\cancel{12}}$$

$$= \frac{25}{\cancel{12}}.$$

64. ©

$$\alpha = 3 + \sqrt{5}, \therefore \beta = 3 - \sqrt{5}$$

$$\therefore x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

$$\Rightarrow x^2 - 6x + (9 - 5) = 0$$

$$\Rightarrow x^2 - 6x + 4 = 0$$

Techno India Group • DN-25 • Sector-V • Kolkata

65. (a) $D = 2^2 - 4(-3)(-8) = 4 - 96 = -92$ 66. (b) $2(-a)^2 + 2a(-a) + 5(-a) + 10 = 0$ $\Rightarrow 2a^2 - 2a^2 - 5a + 10 = 0$ $\Rightarrow 5a = 10$

- $\Rightarrow a = 2$
- 67. ©

$$(-4)^2 - (-4) - 2k - 2 = 0 \implies k = 9$$

68. ©

$$6x - ky + 16 = 0, 3x - y + 8 = 0$$

or
$$3x - \frac{ky}{2} + 8 = 0$$

$$\therefore -\frac{k}{2} = -1$$

$$\Rightarrow k = 2$$

69. D

Number (*xy*) is 10x + y

$$x + y = 9$$

10x + y + 27 = 10y + x

$$\Rightarrow y - x = 3$$

by solving (1) & (2) we get x = 3, y = 6Therefore number is 36.

... (2)

70. ®

by solving y = x and x = 6, we get AB = 6

∴ Area of triangle *OAB*

$$=\frac{1}{2}\times6\times6$$

= 18 sq unit.

71. (A)

$$(x-5)(45-x-5) = 124$$

 $\Rightarrow x^2 - 45x + 324 = 0$

72. ®

$$(x-2)^{2} + 1 = 2x - 3 \text{ can be written as}$$

$$x^{2} - 4x + 4 + 1 = 2x - 3$$

$$\Rightarrow x^{2} - 6x + 8 = 0$$
It is in the form of $ax^{2} + bx + a = 0$

It is in the form of $ax^2 + bx + c = 0$

73. ©

$$(x + 2)^{3} = x^{3} - 4$$

$$\Rightarrow x^{3} + 6x^{2} + 12x + 8 = x^{3} - 4$$

$$\Rightarrow 6x^{2} + 12x + 12 = 0$$

$$\Rightarrow x^{2} + 2x + 2 = 0$$

$$D = (2)^{2} - 4.(1).2$$

$$= 4 - 8 = -4$$

74. D

We can write $x^2 + x + 8 = x^2 - 4$ $\Rightarrow x = -12$

75. **(**A)

$$x(x + 1) = 306$$

$$x^{2} + x - 306 = 0$$

$$\Rightarrow x^{2} + 18x - 17x - 306 = 0$$

$$\Rightarrow x(x + 18) - 17(x + 18) = 0$$

$$\Rightarrow (x - 17)(x + 18) = 0$$

$$x \neq -18 \text{ therefore } x = 17$$

∴ two integers are 17, 18

Г	1	1	1
L	T	T]

Biology

76. 🕲

Concentration of solutes in the cell sap is high

Higher concentration of water outside the cell, in the soil, results in entry of water into the root hair by osmosis.

77. ©

Xylem elements get stained showing ascent of sap through them

Xylem channels are routes through which ascent of sap occurs.

78. ©

Sucrose

79. **(**

Increase

Lower atmospheric pressure will increase the rate of evaporation of water vapour from the leaf surface.

80. **(**A)

When there is high humidity in the atmosphere

Higher humidity will decrease the rate of evaporation of water vapour from the leaf surface.

81. D

Potometer

82. ®

Soil is wet and air is dry

The higher rate of transpiration will be compensated by the higher rate of water absorption from the soil.

83. D

All of these

84. ®

Xylem

85. A

Xylem vessel system

Vessels and tracheids

86. D

Capillary water

87. D

Cohesion Theory

Force of attraction between water molecules ensures the continuity of the chain of water molecules rising through the xylem vessels.

88. ®

Ascent of sap

Continuous loss of water as water vapour causes ascent of sap through the xylem

89. ®

Roots to leaves

90. **(**A)

Food

91. ©

Parasites

92. D

Amino acids

93. ®

Oesophagus

Oesophagus is a part of the human digestive system.

'YNO

94. D

Lactic acid

95. ©

Blood pressure

96. ®

Lipase and glycerol, respectively

97. ®

2

Anaerobic respiration causes incomplete breakdown of glucose.

98. ®

Between the left atrium and left ventricle

99. ®

Trachea and bronchi

To prevent them from collapsing when no air flow occurs through them.

100. **(**A)

Unidirectional

From roots to leaves

