

Solution

Physics

1. (A)

Quantization of Charge
2. ©

Volume charge density
3. (B)

$$
\mathrm{ke}^{2} / \mathrm{r}^{2}=\mathrm{kqe} /(\mathrm{r} / 2)^{2} \Rightarrow \gg(\mathrm{e} / \mathrm{q})=4
$$

4. (A)
$\mathrm{F}=\mathrm{eE}=1.6 \times 10^{5} / 10^{19}=16 / 10^{15} \mathrm{~N}$
due North
5. ©

$$
\text { as } \mathrm{E} \|=2 \mathrm{p} / \mathrm{r}^{3} \text { and } \mathrm{E}_{\perp}=\mathrm{p} / \mathrm{r}^{3}
$$

6. (D)

$$
\begin{aligned}
\mathrm{U} & =(1 / 2) \mathrm{CV}^{2}=(1 / 2)(\mathrm{CV}) \mathrm{V}=(1 / 2) \mathrm{QV} \\
& =\mathrm{Q}^{2} / 2 \mathrm{C}
\end{aligned}
$$

7. (B)

$$
\begin{aligned}
\mathrm{C} & =\mathrm{A} \in_{0} /(\mathrm{d}-\mathrm{t}) \text { and } \mathrm{t}=\mathrm{d} / 2 \\
& =\mathrm{A} \in_{0} /(\mathrm{d} / 2)=2 \mathrm{~A} \in_{0} / \mathrm{d}=2 \mathrm{C}_{0}
\end{aligned}
$$

8. (D)

$$
\mathrm{V}=\mathrm{k}[(\mathrm{q} / \mathrm{r})-(\mathrm{q} / \mathrm{r})]
$$

9. (A)
micro farad
10. ©

For dipole: E proportional to $\left(1 / r^{3}\right)$, as $\mathrm{E}=-(\mathrm{dv} / \mathrm{dr})$, so V proportional to $\left(1 / \mathrm{r}^{2}\right)$
11. (D)

$$
\text { as } 12 \mathrm{C} /(\mathrm{C}+12)=3
$$

12. (A)

$$
\begin{aligned}
\mathrm{F} & =\left(\text { surface charge density } / 2 \epsilon_{0}\right) \mathrm{Q} \\
& =(1 / 2)\left(\text { surface charge density } / \epsilon_{0}\right) \cdot \mathrm{Q} \\
& =(1 / 2) \mathrm{QE}
\end{aligned}
$$

13. ©
potential is scalar but as $\mathrm{E}=-\mathrm{dv} / \mathrm{dr}$
as well E is vector quantity, therefore $\mathrm{dv} / \mathrm{dr}$ is vector quantity.
14. (D)

As work done is zero to move charge on equipotential surface
15. (A)

$$
\mathrm{C}=\mathrm{C}_{0}+\mathrm{C}_{0}+\mathrm{C}_{0}=3 \mathrm{C}_{0}
$$

16. (A)

As $\mathrm{E}=\mathrm{kq} / \mathrm{x}^{2}$
17. (B)

Refer the formula

$$
\mathrm{E}=\mathrm{kqx} /\left\{\sqrt{ }\left(\mathrm{x}^{2}+\mathrm{r}^{2}\right)\right\}^{3}
$$

18. ©
as $E=k q / r^{2}$ and $V=k q / r$, so $E=V / r$
or $30=15 / r=\gg r=0.5 \mathrm{~m}$
19. ©

Common potential $=\left(\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \cdot \mathrm{~V}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)=(\mathrm{CV}+2 \mathrm{CV}) / 2 \mathrm{C}$

$$
=(3 / 2) \mathrm{V}
$$

20. ©

As capacitor is disconnected from battery, which is source of supply of charge to capacitor, so charge remains same.
21. (1)
as $|\mathrm{p}|=(\mathrm{q})(2 \mathrm{l})$, direction of dipole is from -q to +q
22. ©
in order to attain minimum potential energy, F (net) $=\mathrm{qE}-\mathrm{qE}=0$
23. (A)
$\mathrm{E}=\lim _{+\mathrm{Q}_{0} \rightarrow 0} \mathrm{~F} /\left(+\mathrm{Q}_{0}\right)$
24. (A)
$\mathrm{R}^{2}=\mathrm{p}^{2}+\mathrm{p}^{2}+2 \mathrm{p}^{2} \cos 120^{\circ}$
gives $\mathrm{R}=\mathrm{p}$
25. (B)
$\mathrm{U}=-\mathrm{pE} \cos \phi$ where $\phi=90^{\circ}$, gives $\mathrm{U}=0$

Chemistry

26. (D)

The correct equation of Galvanic cell is $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
So, blue colour of CuSO_{4} gradually gets faded. Zinc electrode gets corroded and concentration of ZnSO_{4} increases gradually
27. (B)

More the negative value of $E_{\left(M^{n+} / M\right)}^{0}$, more is the capacity to release electron(s) and its more positive value suggests less capacity to release electron(s) by the metal.
28. (B)

When a cell is formed then the voltage of the cell does not depend on the mass of the electrodes. It depends on the concentration of the electrolytes. If concentration of cathode chamber electrolyte is higher than that in anode chamber.
29. ©

$$
\begin{aligned}
& \mathrm{A}\left|\mathrm{~A}^{+} \| \mathrm{B}^{+}\right| \mathrm{B} \\
& \therefore \mathrm{E}_{\text {cell }}=\left[\mathrm{E}_{\left(\mathrm{B}^{+} / \mathrm{B}\right)}^{\mathrm{O}}-\mathrm{E}_{\left(\mathrm{A}^{+} / \mathrm{A}\right)}^{\mathrm{o}}\right]=[0.45-(-1.35)]=+1.80 \text { volt } \\
& \therefore\left(10 . \mathrm{E}_{\text {cell }}\right)=18
\end{aligned}
$$

30. (D)

The $E_{\text {cell }}$ value does not depend on the number of electron(s) transferred and it depends on the values of $\mathrm{E}_{\text {cathode }}^{0}$ and $\mathrm{E}_{\text {anode }}^{0}$.
31. (A)

Metallic conduction is associated only with electron transfer from one end to other without facing either oxidation or reduction of the conductor.
32. ©

Salt bridge is used in Daniel cell and it minimizes the liquid - liquid junction potential value. The salt bridge acts as an electrical contact between two half cell.
33. (A)

Due to higher ionic character of CuSO_{4}, the rate of electricity conduction is higher than CCl_{4}.
34. (A)

Platinum is weak metal and it does not react with either electrolytes or products.
35. (B)

When temperature is changed then concentration of the electrolytes change sharply. So, temperature remains constant.
36. ©

Ohm's law is associated with voltage, current and resistance and hence it is associated with all types electrical processes.
37. (B)
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}$
now, H^{+}will accept electron(s) from those elements which have negative value of $E_{\left(M^{n+} / M\right)}^{0}$ as they are strong reducing agents. Hence, metal A and metal C can release H_{2} gas from dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$.

[^0]38. ©
$$
\therefore \mathrm{E}_{\text {cell }}=\left[\mathrm{E}_{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\mathrm{o}}-\mathrm{E}_{\left(\mathrm{Na}^{+} / \mathrm{Na}\right)}^{\mathrm{o}}\right]=[-0.76-(-2.7)]=+1.94 \text { volt }
$$
39. ©

If salt bridge is removed then the circuit ends. Hence, neither electron nor current flow in the system
40. (D)

Electron releasing capacity
41. ©

$$
\begin{aligned}
& \mathrm{i}_{1} \cdot \mathrm{C}_{1}=\mathrm{C}_{2} \\
& \therefore \mathrm{i}_{1}=\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\frac{0.01}{0.004}=2.5 \\
& \mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \quad(\mathrm{n}=3) \\
& \quad \alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1} \\
& \therefore \alpha=\frac{2.5-1}{3-1} \\
& \therefore \mathrm{a}=0.75 \\
& \therefore 75 \% \text { dissociated }
\end{aligned}
$$

42. (A)

$$
\mathrm{k}=\mathrm{A} \cdot \mathrm{e}^{-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}}
$$

So, activation energy is associated only with reaction rate constant, not with the equilibrium constant.
43. (A)

Rate $=\mathrm{k} .[\mathrm{A}] .[\mathrm{B}]$
When volume of the vessel becomes one forth then concentration becomes 4 times.

$$
\begin{aligned}
& (\text { rate })_{1}=\mathrm{k} \cdot[4 \mathrm{~A}] \cdot[4 \mathrm{~B}] \\
\therefore & (\text { rate })_{1}=16 \mathrm{k} \cdot[\mathrm{~A}] \cdot[\mathrm{B}] \\
\therefore & (\text { rate })_{1}=16 \cdot(\text { rate })
\end{aligned}
$$

44. ©

Catalyst can change the reaction rate constant value but cannot change the equilibrium constant of a reaction.
45. ©

Strong solute - solvent attractive interaction is generated when sugar is added to water. Hence, higher temperature is needed for breaking the solute - solvent interaction. Thus boiling point increases.
46. ©

Glass does not react with the electrolyte. Hence, the reaction can occur spontaneously.
47. (A)

More the negative value of $\mathrm{E}_{\left(\mathrm{M}^{\mathrm{n}} / \mathrm{M}\right)}^{0}$ means the ion is not a good electron acceptor i.e. oxidising agent.
Now, more the positive value suggests good electron accepting ion.
48. (B)

More the positive value of E°, more is electron accepting capacity. Now, E° value of dichromate is less positive than that of chlorine. $\mathrm{So}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ cannot oxidise HCl into Cl_{2}.
49. ©
50. ©

Standard reduction potential does not depend on the mass of the system. So, it is an intensive property while resistance depends on mass of the system hence it is an extensive property.

Mathematics

51. (B)

The given function is continuous $\forall x \in R$
\therefore It is continuous at $x=0$.

$$
\text { Now, } \begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{\sin (p+1) x+\sin x}{x} \\
= & \lim _{x \rightarrow 0^{-}} \frac{\sin (p+1) x}{(p+1) x} \times(p+1)+\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x} \\
= & p+1+1=p+2
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x^{3 / 2}} \\
= & \lim _{x \rightarrow 0^{+}} \frac{\sqrt{1+x}-1}{x} \\
= & \lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{1+x}+1}=\frac{1}{2} \\
& f(0)=q \\
\therefore & p+2=\frac{1}{2}=q \Rightarrow p=\frac{-3}{2} \text { and } q=\frac{1}{2}
\end{aligned}
$$

52. (c)

$$
f(x)=[x], x \in\left(\frac{-7}{2}, 100\right)
$$

This function is discontinuous for all integral values of x.
Number of integers in the interval $\left(\frac{-7}{2}, 100\right)=103$
\therefore The number of discontinuities $=103$
53. ©
$\tan x$ is undefined for $x=(2 n+1) \frac{\pi}{2}, n \in I$
\therefore The points of discontinuity of $\tan \mathrm{x}$ are $x=(2 n+1) \frac{\pi}{2}, n \in I$
54. (B)

$$
\begin{aligned}
& f(x)=\frac{1-\cos \lambda x}{x \sin x}, x \neq 0 \\
& =\frac{1}{2}, x=0 \\
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos \lambda x}{x \sin x} & =\lim _{x \rightarrow 0} \frac{\lambda \sin \lambda x}{\sin x+x \cos x} \\
& =\lim _{x \rightarrow 0} \frac{\lambda^{2} \cos \lambda x}{\cos x+\cos x-x \sin x} \\
= & \frac{\lambda^{2}}{2}
\end{aligned}
\end{aligned}
$$

$f(0)=\frac{1}{2}$
$\therefore \frac{\lambda^{2}}{2}=\frac{1}{2} \Rightarrow \lambda= \pm 1$
55. (D)
$f(x)=\frac{x-|x|}{x}$
$\therefore f(x)=0, \quad x>0$

$$
=2 ; \quad x<0
$$

Let $x=c>0 \quad \therefore \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} 0=0$

$$
f(c)=0
$$

$\therefore f(x)$ is continuous $\forall c>0$
Let $x=c<0 \quad \therefore \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} 2=2$

$$
f(c)=2
$$

$\therefore f(x)$ is continuous $\forall c<0$
Let $x=c=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 0=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 2=2$
$f(0)$ is not defined.
$\therefore f(x)$ is not continuous at $x=0$
$\therefore f(x)$ is continuous $\forall x$ except $x=0$
56. ©
$f(x)=x$; x is rational
$=1-x ; x$ is irrational
Case 1: When $x \in Q$

$$
\lim _{x \rightarrow \frac{1}{2}} f(x)=\lim _{x \rightarrow \frac{1}{2}} x=\frac{1}{2}
$$

Case 2: When $x \in \bar{Q}, \lim _{x \rightarrow \frac{1}{2}} f(x)=\lim _{x \rightarrow \frac{1}{2}} 1-x=1-\frac{1}{2}=\frac{1}{2}$

$$
f\left(\frac{1}{2}\right)=\frac{1}{2}
$$

$\therefore f(x)$ is continuous at $x=\frac{1}{2}$
57. (B)

$$
\begin{aligned}
f(x) & =\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x},-1 \leq x<0 \\
& =\frac{2 x+1}{x-2}, 0 \leq x \leq 1
\end{aligned}
$$

The given function is continuous in $[-1,1]$.
\therefore It is continuous at $x=0$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{2 x+1}{x-2}=-\frac{1}{2} \\
& \begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{2 p}{\sqrt{1+p x}+\sqrt{1-p x}} \\
& =p
\end{aligned} \\
& f(0)=-\frac{1}{2}
\end{aligned} \quad \therefore p=-\frac{1}{2} \text {. }
$$

58. (B)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\log (1+a x)-\log (1-b x)}{x} \\
& =\lim _{x \rightarrow 0} \frac{\log (1+a x)}{a x} \times a+\lim _{x \rightarrow 0} \frac{\log (1-b x)}{-b x} \times b \\
& =a+b
\end{aligned}
$$

$$
f(0)=K \quad \therefore \quad K=a+b
$$

59. ©

$$
\begin{aligned}
f(x) & =|x| \cos \frac{1}{x}+15 x^{3} \\
& ; x \neq 0 \\
& =K \quad ; x=0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} x \cos \frac{1}{x}+15 x^{3} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}-x \cos \frac{1}{x}+15 x^{3} \\
& =0
\end{aligned}
$$

$$
f(0)=K
$$

$$
\therefore K=0
$$

60. (A)

$$
\begin{aligned}
& f(x)=x+2 ; x<0 \\
& =-x^{2}-2,0 \leq x<1 \\
& =x \quad, \quad x \geq 1 \\
& \begin{array}{rlrl}
\therefore g(x)=|f(x)| & =-x-2 \quad ; \quad x<-2 \\
& =x+2 & ; \quad-2 \leq x<0 \\
& =x^{2}+2 & ; \quad 0 \leq x<1 \\
& =x \quad \sqcap \quad ; \quad x \geq 1
\end{array}
\end{aligned}
$$

$\lim _{x \rightarrow-2^{-}} g(x)=\lim _{x \rightarrow-2^{-}}-x-2=2-2=0$

$$
\begin{gathered}
\lim _{x \rightarrow-2^{+}} g(x)=\lim _{x \rightarrow-2^{+}} x+2=-2+2=0 \\
g(-2)=-2+2=0
\end{gathered}
$$

$\therefore g(x)$ is continuous at $x=-2$

$$
\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} x+2=2
$$

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} x+2=2 \\
g(0)=2
\end{gathered}
$$

$\therefore g(x)$ is continuous at $x=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} x^{2}+2=3 \\
& \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} x=1 \\
& g(1)=1
\end{aligned}
$$

$\therefore g(x)$ is not continuous at $x=1$
\therefore number of points of discontinuity $=1$
61. (B)

Given, $f(0)=k$

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0}(\cos x)^{1 / \sin x} \quad\left[1^{\infty} \text { form }\right] \\
& =e^{\lim _{x \rightarrow 0} \frac{1}{\sin x} \log \cos x} \\
& =e^{0}=1
\end{aligned}
$$

For $f(x)$ to be continuous at $x=0, k=1$.
62. ©

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{(27-2 x)^{1 / 3}-(27)^{1 / 3}}{3\left[3-(243+5 x)^{1 / 5}\right]}=\lim _{x \rightarrow 0} \frac{\frac{(27-2 x)^{1 / 3}-(27)^{1 / 3}}{(27-2 x)-27}(-2 x)}{-3\left[\frac{(243+5 x)^{1 / 5}-(243)^{1 / 5}}{243+5 x-243} \cdot 5 x\right]} \\
& =\frac{2}{15} \frac{\frac{1}{3}(27)^{-2 / 3}}{\frac{1}{5}(243)^{-4 / 5}}=\frac{2}{15} \cdot \frac{5}{3} \cdot \frac{1}{9} \cdot 81=2
\end{aligned}
$$

63. (D)

Let k is integer
$f(k)=0, f(k-0)=(k-1)^{2}-\left(k^{2}-1\right)=2-2 k$
$f(k+0)=k^{2}-\left(k^{2}\right)=0$
If $f(x)$ is continuous at $x=k$, then $2-2 k=0 \Rightarrow k=1$
64. (A)

Case-1: When $x=a \in Q$
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} 5 x=5 a$
Case-2: When $x=a \in R-Q$

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{2}+6=a^{2}+6
$$

$f(x)$ is continuous when $5 a=a^{2}+6 \Rightarrow a=2,3$
65. (D)

Since, $f(x)$ is continuous at $x=0$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 0} f(x)=f(0) \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{-e^{x}+2^{x}}{x}=f(0) \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{-e^{x}+2^{x} \log 2}{1}=f(0) \quad \text { [by } L^{\prime} \text { 'Hospital's rule] } \\
& \Rightarrow f(0)=-1+\log 2
\end{aligned}
$$

66. (A)

Reflexive but not symmetric
67. (A)

$$
\sin ^{-1}\left[\cos \left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]=\sin ^{-1}\left[\cos \frac{\pi}{3}\right]=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

68. (A)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A^{4}=A^{2} \times A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

69. (B)

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right] \therefore|\operatorname{adj} A|=|A|^{3-1}=|A|^{2} \\
=a^{6}
\end{gathered}
$$

70. (A)

$$
A=\left[\begin{array}{rrr}
1 & 2 & x \\
3 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{l}
y \\
x \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& A B=\left[\begin{array}{rrr}
1 & 2 & x \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
y \\
x \\
1
\end{array}\right] \\
& \quad=\left[\begin{array}{l}
y+2 x+x \\
3 y-x+2
\end{array}\right]=\left[\begin{array}{l}
6 \\
8
\end{array}\right] \\
& \Rightarrow 3 x+y=6 \text { and } 3 y-x=6 \\
& \therefore 3 x+y=3 y-x \\
& \Rightarrow 4 x=2 y \\
& \Rightarrow 2 x=y
\end{aligned}
$$

71. (D)

$$
f(x)=2 x, g(x)=\frac{x^{2}}{2}+1
$$

$\therefore \frac{g(x)}{f(x)}=\frac{\frac{x^{2}}{2}+1}{2 x} \quad$ which can be discontinuous function.
72. ©

$$
f(x)=\frac{4-x^{2}}{4 x-x^{3}}=\frac{4-x^{2}}{x\left(4-x^{2}\right)}
$$

\therefore Points of discontinuity are $0,2,-2$.
73. (A)

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0
$$

$\therefore f(0)=0$ if $f(x)$ is continuous at $x=0$
74. ©

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow \pi^{+}}} f(x)=\lim _{\substack{x \rightarrow \pi^{+}}} \sin x+n=n+1 \\
& \lim _{x \rightarrow \frac{\pi^{-}}{2}} \\
& \\
& \\
& \quad f(x)=\lim _{x \rightarrow \frac{\pi^{-}}{2}} m x+1=m \frac{\pi}{2}+1 \\
& \therefore n \frac{\pi}{2}+1 \\
& \therefore \\
& \Rightarrow n+1=m \frac{\pi}{2}+1 \\
& \Rightarrow \\
& n=m \frac{\pi}{2}
\end{aligned}
$$

75. (B)

$$
\begin{aligned}
& f(x)=\frac{\sqrt{4+x}-2}{x} ; x \neq 0 \\
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\not x}{\not x(\sqrt{4+x}+2)}=\frac{1}{4} \\
\therefore & f(0)=\frac{1}{4}
\end{aligned}
$$

Biology

76. (D)

Flocs significantly increase the BOD of the sewage
Flocs decrease the BOD
77. (D)
$\mathrm{H}_{2} \mathrm{O}$
78. (D)

All of the above
79. (D)

To make plants resistant to insects
The plants produce a toxin that kills insects
80. (A)

Azotobacter
81. (A)

A-Sludge tank, B - Gas holder, C- Slurry
82. (A)

Dung + water
83. ©

Integrated Pest Management
84. (B)

Saccharomyces cerevisiae

Its an yeast used commercially in bakeries and breweries
85. (A)

Phosphate
86. (B)

Viola
87. (D)

They turn to seed coats
88. (A)

GIFT
89. ©

Middle piece
90. (B)

Cryptorchidism

91. (A)

Sporopollenin
Due to absence of sporopollenin, the pollen grain germinates as a pollen tube through the germ pores.
92. (B)

Arctic Tundra
93. (D)

All of the above
94. ©

Pericarp
95. ©

Both A and B
96. (A)

Haploid
It is formed by meiosis 1 in oogenesis
97. (D)

Parturition
98. ©

72
99. (D)

MTP
100. (A)

GIFT

[^0]: Techno India Group • DN-25 • Sector-V • Kolkata

