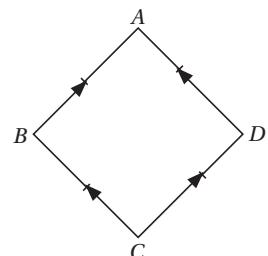


CBSE NCERT Based Chapter wise Questions (2025-2026)

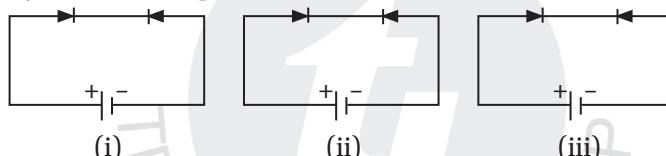
Class-XII

Subject: Physics

Chapter Name : **Semiconductor Electronics (Chapter : 9)**


Total : 11 Marks (expected) [MCQ(2)-1 Mark, Assertion-Reason(1)-1 Mark, SA(1)-3 Marks, LA(1)-5 Marks]

Level - 2(Higher Order)

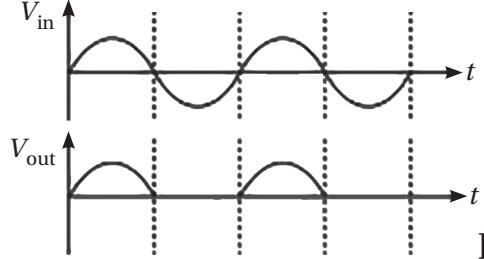

MCQ Type Question:

- Diffusion current in a *p-n* junction is greater than the drift current in magnitude
 - if the junction is forward-biased
 - if the junction is reverse-biased
 - if the junction is unbiased
 - in no case
- For the given circuit shown in figure, to act as full waves rectifier : a.c. input should be connected across _____ and _____ the d.c. output would appear across _____ and _____
 - A, C, B, D*
 - B, D, A, C*
 - A, B, C, D*
 - C, A, D, B*

[Hints : concept of bridge rectifier]

- Two identical *P-N* junction may be connected in series with a battery in three ways (figure below). The potential drops across the two *P-N* junction are equal in

- circuit (i) and (ii)
- circuit (ii) and (iii)
- circuit (iii) and (i)
- circuit (i) only


[Hints : Apply the concept of forward and reverse bias condition]

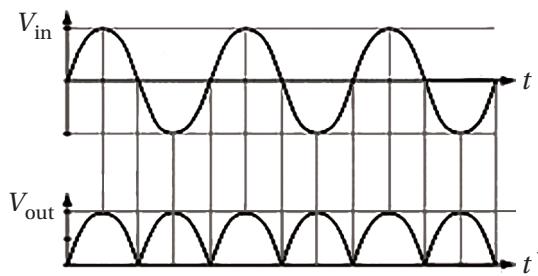
- Increase in temperature
 - increases forward resistance
 - increase reverse resistance
 - affects *V-I* characteristics of *p-n* junction
 - does not affect *V-I* character

[Hints : Increase in temperature increases the mobility of charge carriers hence decreases resistance]

- In the half wave rectifier circuit of operating from 50 Hz mains frequency, the fundamental frequency in the ripple would be
 - 25 Hz
 - 50 Hz
 - 70.7 Hz
 - 100 Hz

[Hints : Give answer from input and output graph]

6. What is the ratio of output frequencies of full wave rectifier and a half wave rectifier, when an input of frequency 50 Hz is fed at input?


Ⓐ 1 : 2

Ⓑ 2 : 1

Ⓒ 4 : 1

Ⓓ 1 : 4

[Hints : Give answer front input and output graph

Assertion-Reason based questions

a) Both Assertion and Reason are correct and Reason is a correct explanation of Assertion

b) Both Assertion and Reason are correct and Reason is not a correct explanation of Assertion

c) Assertion is correct, Reason is incorrect

d) Assertion is incorrect, Reason is correct

7. Assertion : When a semiconductor is doped with a donor impurity, the hole concentration decreases and the electron concentration increases.

Reason : A donor impurity is an atom with valence electrons of five always.

Ⓐ a

Ⓑ b

Ⓒ c

Ⓓ d

8. Assertion : $p-n$ junction diode can be used even at ultra high frequencies.

Reason : Capacitive reactance of a $p-n$ junction diode increases as frequency increases.

Ⓐ a

Ⓑ b

Ⓒ c

Ⓓ d

9. Assertion : Light Emitting Diode (LED) emit spontaneous radiation.

Reason : LED are forward-biased $p-n$ junction.

Ⓐ a

Ⓑ b

Ⓒ c

Ⓓ d

Short Answer Type Questions (SAQ)

10. State the level of doping and biasing condition used in—

- Light emitting diode
- Photo diode
- Zener diode

11. What is the relation between emitter current (I_E), base current (I_B) and collector current (I_C) at any instant in a properly biased common emitter transistor circuit?

[Hints : From the concept of working of transistor]

12. a) What is the value of phase difference between the input and output signal when transistor used as common emitter amplifier?

b) How does the collector current change in a junction transistor, if the base region has larger width.

13. Derive the relation between current gains α and β .

14. For a transistor the value of β is 100. What is value of α .

[Hints : use the relation $\beta = \frac{\alpha}{1 - \alpha}$]

Long Answer Type Questions (LAQ)

15. a) Draw a labeled circuit diagram of a common base amplifier using *n-p-n* transistor.
b) Name the purpose for which common emitter transistor amplifier is preferred over common base transistor amplifier.
16. a) Differentiate between three segments of an *n-p-n* transistor on the basis of their size and level of doping.
b) Draw a plot of transistor characteristic and show which portion of the characteristic is used in amplification.
17. a) Describe briefly the functions of the three segments of *n-p-n* transistor.
b) Draw the circuit arrangement for studying the output characteristics on *n-p-n* transistor in CE mode. Explain how the output characteristics is obtained.

ANSWER

1. (A)	7. (B)	13.
2. (B)	8. (C)	14. $\alpha = \frac{100}{101}$
3. (B)	9. (B)	15.
4. (C)	10.	16.
5. (B)	11.	17.
6. (B)	12.	

