

Monthly Progessive Test

Class: XI

Subject: PCMB

Test Booklet No.: MPT01 Test Date: 2 2 0 4 2 0 2 4

Time: 180 mins Full Marks: 200

Important Instructions:

- 1. The Test is of 180 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0122042024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scrible or write on or beyond discrete bars of OMR sheet at both sides**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

1. The current drawn from the battery by network of four resistors shown in the figure above

- **(A)** 0.3A
- **®** 0.4A
- © 0.5A

© 0.6A

2. What will be the length of the nichrome wire of resistance 5.0 ohm, if the length of similar wire of 120 cm has resistance of 2.5 ohm?

- **A** 120cm
- **B** 240 cm
- © 200 cm
- **②** 480 cm

3. In parallel combination of resistors, potential difference across each resistor is

A different

B sometimes different

© same

insufficient data

4. Two resistors of resistance 2 ohm and 4 ohm when connected to a battery will have

- Same current flowing through them when connected in parallel
- ® same current flowing through them when connected in series
- © same potential difference across them when connected in series
- (D) different potential difference across them when connected in parallel

5. An electric heater is rated 100W and 220V. If it is operated on 110V, the power consumption will be

- **A** 10W
- **B** 25W

© 15W

100W

6. To determine the approximate focal length of the given convex lens by focusing a distant object (say, a tree), we try to focus the image of the object on a screen. The characteristic/s of the image

A real image

B inverted image

© diminished

all of these are correct

7. When parallel rays of light fall on a concave mirror along its principal axis, after reflection

from the concave mirror, meet at a point infront of the mirror. This point is called

A centre of curvature

B focal point of the mirror

© optical point

- Pole of mirror
- 8. A ray of light passing through the optical centre of convex lens passes
 - A with deviation

B some times with deviation

© without deviation

- through focus
- **9.** If the focal length of a concave mirror is 20cm then the magnitude of its radius of curvature is
 - **A** 30cm
- **B** 25cm
- © 10cm
- **©** 40cm
- **10.** A ray of light is incident on a glass slab as shown in the figure below. The angle of refraction inside glass slab (when refraction takes place from air to glass) is

A 62°

B 45°

© 28°

(D) 30°

- **11.** SI unit of frequency of sound is
 - A hertz
- newton
- © maxwell
- faraday
- **12.** Speed of sound = (frequency/wavelength), the relation is
 - A True
- B false
- © may be true
- none of these
- **13.** If the speed of sound in air is 330m/s and frequency of sound be 100Hz, then wavelength is equal to
 - **A** 6.4m
- **®** 1.6m
- © 3.3m
- 3m

- **14.** Speed of sound in free space (vacuum) is
 - **a** 330m/s
- **B** 1500m/s
- © 500m/s
- 0m/s as sound can not pass through free space

			[0]				
15 .	Range of frequency	Range of frequency of audible sound is					
	♠ 0Hz to 20Hz			B	20Hz to 20kHz		
	© > 20kHz			(D)	0Hz to 10 Hz		
16.	The time required to velocity as 1m/s and			0m	along a straight li	ne v	vith initial and final
	(A) 5s	lacksquare	15s	©	10s	(D)	20s
17.	A particle starts from particle is equal to (•		_
	(A) 10m	lacksquare	15m	©	20m	(D)	25m
18.	Starting from rest, particle is moving a the particle is				-		
	$\triangle 1 \text{m/s}^2$	lacksquare	$2m/s^2$	©	3 m/s^2	(D)	4m/s^2
19.	Starting from rest, a 3m/s ² in the time in ⓐ 2m	terv		lace	ement of the partic	cle d	
20.	A particle travels first of the distance with (a) uv/(u+v)	st ha	alf of the distance (ocity v m/s. Then t	(in r he a	n) with velocity u	m/s ing t	and remaining half he period is
21.	The magnetic field lines inside the solenoid are in the form of straight lines, which indicates that the magnetic field is						
	A uniform			$^{f B}$	non uniform		
	© absent			(D)	some times unifo	orm	
22.	If we place soft iron inside the strong magnetic field produced inside the solenoid, then soft iron						
	(A) will not be magn	etiz	ed	lacksquare	will be magnetize	ed	
	© sometimes will be	oe n	nagnetized	(D)	we cannot say as	data	a is insufficient
23.	The pattern of the magnetic field associated with a current carrying solenoid and pattern of the magnetic field around a bar magnet, are						
	A different			B	some times differ	rent	
	© similar			(D)	some times simil	ar	

24.	I. The N and S poles exchange position when the direction of current through the solenoid is reversed					
	A false	® sometimes false	©	true	(D)	sometimes true
25.	The magnetic field l	lines around a straight	cur	rent carrying cond	luct	or are
	concentric square	res	B	concentric hexag	ons	
	© concentric triangles			concentric circle	S	
•—		Chem	ist	ry		
26	Which of the follow	ing is an aldehyde fun				
20.		B — CHO		— OH	(D)	— COCl
27.	Which of the follow	ing is not a crystalline	allo	trope of carbon?		
	Diamond	B Graphite	©	Fullerene	(D)	Gas carbon
28.	Decarboxylation rea	action is associated wi	ith v	vhich functional g	roup)?
	Alcohol	Aldehyde	©	Carboxylic acid	(D)	Ketone
29.	Which of the follow	ring hydrocarbon cont	tain	s carbon - carbon	dou	ble bond?
	A Methane	B Ethane	©	Ethene	(D)	Ethyne
30.	What is the corect for	ormula of isopropyl al	kyl g	group?		
	♠ CH ₃ CH ₂ CH ₂ —	® (CH ₃) ₃ C −	©	$(C_2H_5)_2CH$ —	(D)	$(CH_3)_2CH$ —
31.	What is the SI unit	of charge?	1			
	A e.s.u	B Joule		Coulomb	(D)	Watt
32.	When $Pb(NO_3)_2$ is stoof	trongly heated then lea	ad oz	xide, NO_2 , O_2 is for	med	l. This is an example
	Decomposition is a second of the sec	rection	B	Displacement rea	actio	on
	© Double displace:	ment reaction	D	No option is corr	ect	
33.	NaCl reacts with Ag	NO_3 . It is an example	of			
	Decomposition is a second of the sec	rection	B	Displacement rea	actio	on
	© Double displace	ment reaction	(D)	No option is corr	ect	
34.	Which is true about	t endothermic reaction	1?			
	A Heat is always re	leased	B	Heat is always ab	sorl	oed
	Heat is released.	at first than absorbed		Heat is absorbed	at fi	ret than ralesced

			[0]				
35.	Which is the correct	un	it of pressure?				
	\triangle N.m ²	lacksquare	$N.m^3$	©	$N.m^{-3}$	(D)	$N.m^{-2}$
36.	What is the correct p	oroc	luct when zinc read	cts v	vith dilute $ m H_2SO_4$ a	t no	ormal temperature?
	\triangle ZnSO ₄ + SO ₂ + H	I_2O		B	$ZnO + SO_2 + H_2O$		
	\bigcirc ZnSO ₄ + H ₂			(D)	$ZnO + SO_2 + H_2$		
37.	When methane read	cts v	vith excess oxygen	gas	then the correct p	rod	uct will be
	\bigcirc CO + H ₂ O	f B	$CO_2 + H_2O$	©	$C + H_2O$	(D)	$C + CO_2 + H_2O$
38.	Which pair is homo	lgoı	ıs to each other?				
Ethane and etheneEthene and ethyne							
	© Methane and eth	ene	2	(D)	Methane and etha	ane	
39.	Which is an acid sal	t?					
	Na₂SO₄	lacksquare	KNO ₃	©	NaHCO ₃	(D)	NH ₄ Cl
40.	Which is not an oxy	acio	1?				
	A Nitric acid	f B	Phosphoric acid	©	Sulphuric acid	(D)	Hydrochloric acid
41.	Dibasic acid means		크				
	An acid that can	incı	ease its acidity by	incı	easing temperatur	e	
	An acid that is hi	ghly	y soluble in water				
	© An acid that can	rele	ase two H ⁺ ions	11/	MAGN		
	An acid that can	rele	ase one H ⁺ ion	VI			
42.	Among the given co	mp	ounds which is a w	æak	c base?		
	NaOH	$^{f B}$	КОН	©	$Ca(OH)_2$	(D)	NH_4OH
43.	Which is present in	Mil	k of magnesia, an a	ınta	cid?		
	\bigcirc MgSO ₄	$^{f B}$	MgO	©	$Mg(OH)_2$	(D)	MgCl_2
44.	What is the molecul	ar f	ormula of Plaster o	f Pa	aris?		
	⊗ CaSO ₄	B	CaSO ₄ . 2H ₂ O	©	CaSO ₄ .4H ₂ O	(D)	$CaSO_4.\frac{1}{2}H_2O$
45.	Acid rain is caused l	oy w	which gas ?				_
	♠ CH ₄	B	SO_2	©	O_2	(D)	N_2
46.	$0.112 \mathrm{L}\mathrm{O}_2$ gas at ST	P is	equivalent to (O =	16)	which of the follow	ving	g?
	a 0.016 gm	B	0.16 gm	©	0.032 gm	(D)	0.32 gm

47.	If Avogadro number is 6.02×10^{23} then what is the number of molecules present in 6.4 gm oxygen [O = 16]?						
	\triangle 12.04 × 10 ²¹	B 12.04×10^{22}	© 3.01×10^{22}	(D)	18.06×10^{22}		
48.	What is the number	of moles of 0.448 L N ₂	gas at STP?				
	(A) 0.2 mole	® 0.002 mole	© 0.1 mole	(D)	0.02 mole		
49.	Among the given m	olecules which is a mo	onobasic acid?				
	\bigcirc H ₂ SO ₄	\blacksquare H ₃ PO ₄	\bigcirc H ₃ PO ₃	(D)	H_3PO_2		
50.	What is the mass of	$60.03 \text{ mole H}_2\text{SO}_4 \text{ [H = }$: 1, S = 32, O = 16] ?				
	(A) 1.47 gm	® 2.94 gm	© 0.147 gm	(D)	0.294 gm		
•		Mathen	natics		•		
51.	An irrational number	er between 2 and 2.5 is	3				
	\bigcirc $\sqrt{11}$	® √5	© $\sqrt{22.5}$	(D)	$\sqrt{12.5}$		
52.	The value of $\sqrt{3-2}$						
	(A) $\sqrt{2}-1$			(D)	$\sqrt{2} + \sqrt{2}$		
53.	If $x = 7 + 4\sqrt{3}$ and x	$xy = 1$, then $\frac{1}{x^2} + \frac{1}{y^2}$	00				
	A 64	® 134	© 194	(D)	1/49		
54.	If $2^x = 3^y = 6^{-z}$, then	$\frac{1}{r} + \frac{1}{v} + \frac{1}{z}$ is equal to					
	A 2	B 3	© 1	(D)	0		
55.	$\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}}$ is eq	qual to					
	(A) $x^{2(a-b)}$	B 1	© x ^{a-b}	(D)	x ^{b-a}		
56.	$\text{If } p(x) = x^2 - 2\sqrt{2}x + \frac{1}{2}x + $	1, then $p(2\sqrt{2})$					
	(A) 0	® 1	© $4\sqrt{2}$	(D)	$8\sqrt{2} + 1$		
57.	If one factor of the e	expression $x^3 + 7kx^2 - 4kx^2 - 4kx$	4kx + 12 is (x + 3), then	the	value of k is		
	(A) 5	(B) $\frac{1}{5}$	© $-\frac{13}{17}$	(D)	$-\frac{17}{13}$		
58.	If n is any natural nu	umber, then $6^n - 5^n$ alv	vays ends with				

© 7

1

B 5

A 3

7
1

		[,]		
59.	If $(x + a)$ is a factor of	of $2x^2 + 2ax + 5x + 10$, then	hen the value of a is	
	A 3	B 2	© 0	D 1
60.	Zero of $p(x) = x^2 - 2x$	<i>c</i> − 3 is:		
	(A) 0	B 1	© -1	D -3
61.	Quadratic polynomia	ial having zeroes 1 and	d -2 is:	
	(A) $x^2 - x + 2$	B $x^2 - x - 2$	© $x^2 + x - 2$	① $x^2 + x + 2$
62.	If α and β are the zet the value of K .	\mathbf{ros} of the polynomial j	$f(x) = x^2 - 5x + K \operatorname{such}$	that $\alpha - \beta = 1$, then find
	A 5	B 6	© 7	D 2
63.	Graph drawn from t	he equation $y = x^2 - 3x$	c − 4 will be:	
	A Circle	B Parabola	© Straight Line	Hyperbola
64.	For what value of k , c lines?	lo the equations $3x - y$	+8 = 0 and $6x - ky + 16 =$	= 0 represent coincident
		(B) $-\frac{1}{2}$	© 2	© -2
65.	The value of k for we solution is			3x + ky + 15 = 0 has no
	A 6	® −6	\bigcirc $\frac{3}{2}$	None of these
66.	Find the nature of so $-6y = 8$	olution of the system o	of linear equations give	en by $3x + 4y = 5$ and $4x$
	unique solution	- 1	no solution	
	© infinitely many s	solutions	inadequate data	
67.	The value of $x + y$ in	the solution of equation	ons $\frac{x}{4} + \frac{y}{3} = \frac{5}{12}$ and $\frac{x}{2} + y$	=1 is
	$ riangle$ $ frac{1}{2}$	(B) $\frac{3}{2}$	© 2	① $\frac{5}{2}$
68.	The values of k for w	which the equation $16x$	$x^2 + 4kx + 9 = 0$ has rea	l and equal roots are
	(A) $6, \frac{-1}{6}$	® 36, -36	© 6, -6	\bigcirc $\frac{3}{4}$, $-\frac{3}{4}$
69.	If one root of the equ	uation $4x^2 - 2x + (\lambda - 4)$) = 0 be the reciprocal	of the other then $\lambda =$
	A 8	B -8	© 4	D -4
70.	If the sum of the roo	ts of the equation x^2 –	(k+6)x+2(2k-1)=0) is equal to half of their

© 5

B 7

product, then k=

A) 6

1

71.	If 2 is a root of the e roots, then $q =$	qua	$ation x^2 - ax + 12 =$	0 a	nd the equation x^2	$c^2 + c$	ax + q = 0 has equa
	(A) 12	B	8	©	20	(D)	16
72.	If the equation $x^2 + 4$	1 <i>x</i> +	k = 0 has real and	dist	inct roots, then		
	(A) <i>k</i> < 4	₿	<i>k</i> > 4	©	$k \ge 4$	(D)	$k \le 4$
73.	If $ax^2 + bx + c = 0$ has	s eq	ual roots, then $c =$				
			24		$\frac{-b^2}{4a}$	(D)	$\frac{b^2}{4a}$
74.	Roots of the quadrat		equation $x^2 - 5x - 6$	= 0	are		
	equal but negative				unequal but of sa		signs
	© unequal but of o	ppo	site signs	(D)	equal but positive	9	
75.	The quadratic equat						
	$ x^2 - 6x - 3 = 0 $	₿	$x^2 + 6x - 3 = 0$	©	$x^2 + 6x + 3 = 0$	(D)	$x^2 - 6x + 3 = 0$
•—			Biolo	gy			
70		1.0					
76.	Cell is the Latin wor				A1 Q1.		
	A The big rectangle				A beehive		Cork tissue
77.	The components of	_	<i>Y</i> ₁			ır, a	re
	A cytoplasm	B	organelles	©	nucleus	(D)	cell membrane
78.	Which of the followi	ng	organisms show a	'nu	cleoid' in their cell	s?	
	A Bacteria	lacksquare	Fungi	©	Plants	(D)	Animals
79.	are the 'j	pow	verhouses' of the ce	ell.			
	Nucleus	B	Plastids	©	Mitochondria	(D)	Vacuoles
80.	When a cell gains wa	ater	by endosmosis, th	en	the solution surro	ınd	ing it is
	A Hypotonic	lacksquare	Hypertonic	©	Isotonic	(D)	None of the above
81.	The lateral meristen	ı he	elps in—				
	(A) increasing the len	ngtl	n of roots	₿	growth of buds		
	© increasing the wi	dth	of stem	(D)	growth of root hai	ir	
82.	Chlorenchyma is a t	ype	of—				
	Meristematic tiss	ue		lacksquare	Parenchyma		
	© Collenchyma			(D)	Sclerenchyma		

83.	•	s make up the phloem			©	Circto on		
	(A) One	B Four	©	Eight	Ф	Sixteen		
84.	The type of epithelia	al tissue found in the li	inin	g of kidney tubule	s are	e—		
	A Squamous epithe	elium	lacksquare	Columnar epithe	liun	n		
	© Cuboidal epithelium © Stratified squamous epithelium							
85.	Cylindrical, branche	ed and uninucleate ce	ells are found in the muscles.					
	Skeletal	Smooth	©	Cardiac	(D)	All		
86.	Choose the correct s	statement about photo	osyr	nthesis—				
	Carbon dioxide is	s reduced to carbohyd	drate	e.				
	Carbon dioxide is	s oxidised to carbohyo	lrat	e.				
	© Glucose is produced as a byproduct.							
	© Chlorophyll help	s to take in carbon dic	oxid	e from air.				
87.	The process of diges	tion begins in the—						
	Stomach		B	Small intestine				
	© Oesophagus	교	(D)	Buccal cavity				
88.	© Oesophagus Ticks, lice and tapev Saprophytes	vorm are—		\sim				
	Saprophytes	7/1	B	Herbivores				
	© Scavengers	0/	(D)	Parasites				
89.	Complete the equat	ion, choosing the righ	ıt op	otion—				
	Glucose + Oxygen –	→+ I	Ene	gy				
	A Carbon dioxide a		B	Carbon dioxide a				
	© Carbon dioxide a	ınd lactic acid	(D)	Ethanol and lacti	c ac	id		
90.	Choose the incorrect							
	A The nasal passag	e is lined with hair and	d m	ucus which help to	o cle	ean air.		
	B The lungs are pre	esent over a sheet of m	usc	le, called diaphrag	gm.			
	© The trachea is sur	rrounded by incomple	ete ı	rings of ligament.				
	Alveoli are the act and its environm	tual sites for the exchar ent.	nge	of respiratory gases	s be	tween the organism		
91.	The two vena cavae	bring deoxygenated b	loo	d to the	of tl	ne heart.		
	A Right atrium	B Left atrium	©	Right ventricle	(D)	Left ventricle		

			L .						
92.	Sieve tubes of phloe	m h	nelp in—						
	A Transportation o	f on	aly water.						
	® Translocation of	foo	d only in the upwa	rd d	irection.				
	© Translocation of food both in upward and downward directions.								
	Ascent of sap.								
93.	Plants get rid of exce	ess i	water by the proces	SS O	f—				
	Osmosis	lacksquare	Transpiration	©	Storage as resins	(D)	Photosynthesis		
94.	Name the organ in v	vhic	ch urine is tempora	irily	stored before bei	ng r	eleased outside—		
	Kidney	lacksquare	Liver	©	Urinary bladder	(D)	Urethra		
95.	The only digestive ju	ıice	which contains no	en	zyme is—				
	Saliva	lacksquare	Gastric juice	©	Pancreatic juice	(D)	Bile		
96.	Name the stucture of cavity—	of th	ne male reproducti	ve s	system which lies	outs	side the abdominal		
	Testis	lacksquare	Vas deferens	©	Seminal vesicle	(D)	All		
97.	The site of fertilisation	on i	n humans is—		Q				
	Ovary	$^{\circ}$	Fallopian tube	©	Uterus	(D)	Vagina		
98.	The embryo gets nur	triti	on from the mothe	er's l	olood with the hel	p of	<u>. </u>		
	Umbilical cord	lacksquare	Ovary	©	Placenta	(D)	Uterus		
99.	The narrow passage is—		11111111	and	l vagina in the fema	ale r	eproductive system		
	A Fallopian tube	lacksquare	Urethra	©	Cervix	(D)	Ovary		
LOO.	Menstruation happ	ens	s when—						
	(A) the egg is fertilise	d		lacksquare	the egg is not fert	ilise	ed		
	© the process of implantation occurs			\bigcirc	the girl is yet to attain nuberty				

Space For Rough Works

Space For Rough Works

