

Monthly Progessive Test

Class: X

Subject: PCMB

Time: 180 mins Full Marks: 200

Important Instructions:

- 1. The Test is of 180 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0210052024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scrible or write on or beyond discrete bars of OMR sheet at both sides**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

1.	A ray of light passes fro	om glass into air. The	e angle of refraction w	ill be		
	A equal to the angle of	of incidence	® greater than the a	ngle of incidence		
	© smaller than the an	gle of incidence	© 45°			
2.	When a ray of light trav	velling in water ente	rs into glass obliquely	:		
	(A) is refracted towards	the normal	® is refracted away f	from the normal		
	© does not get refract	ed	(D) is reflected along	the same path		
3.	The refractive index of	a medium depends	on			
	The nature of the m	aterial of the mediu	m			
	® wavelength (or colour) of the light used					
	© both (A) and (B)					
	none of the above is	s correct				
4.	If $n_{\text{kerosene}} = 1.44$; n_{glass}	$= 1.5, n_{water} = 1.33,$				
	In which of these mate		el fastest			
		glass	© water	• we can't say		
5.	If $^{air}n_{glass} = 3/2$ and $_{air}n_{glass}$	$t_{\text{water}} = 4/3 \text{ then }_{\text{water}}$	$n_{glass} =$			
	A 1.8	1.25	© 9/8	© 8/9		
6.	Select the correct option	on O	VDIA G.			
	\triangle $\mu_{violet} > \mu_{red}$					
	B a glass slab appear vertically from above	· · · · · · · · · · · · · · · · · · ·	hird of its real thickn	ess when it is viewed		
	© The depth of a water vertically above (it a		ree-fourth of its real d	epth on seeing it from		
	All the above are co	rrect				
7.	As seen from the above depth is 20 cm. The ref		-	is 15 cm, when its real		
	A 3/4	3/2	© 4/3	© 9/8		

8. The letters appear to be raised when viewed through a glass slab placed over the

© Diffusion

B Dispersion

document because of

A Reflection

Refraction

9.	A pencil partially immersed in water appears to be bent because of					
	Diffraction	B Refraction	© Dispersion	(D)	Interference	
10.	A lemon kept in wat viewed from the sid	er in a glass tumbler a es, because of	ppears to be bigger th	an i	ts actual size, when	
	A Refraction	B Reflection	© Dispersion	(D)	Diffusion	
11.	Speed of light in gla	ss is $y \times 10^8$ m/s, then J	<i>y</i> =			
	A 3	B 2	© 1.5	(D)	1.25	
12.	When a light ray ent	ters a glass slab, then tl	he emergent ray is			
	A Parallel to incide	nt ray				
	Always at an ang	le of 30° to the inciden	t ray			
	•	le of 60° with the incid	ent ray			
	None of the above					
13.		n through a rectangu ngle i and emergent an	S S S S S S S S S S S S S S S S S S S	med	lium, the outcome	
	$\triangle i > e$	$oldsymbol{\mathbb{B}}$ $i < e$	\bigcirc $i=e$	(D)	Data insufficient	
14 .	If speed of light in g	lass is 2×10^8 , then refi	ractive index of glass i	s		
	(A) 4/3	B 9/8	© 3/2	(D)	$\sqrt{2}$	
1 5.	Light enters from ai	r to diamond ($ri = 2.42$), then speed of light i	n di	amond is	
	$\triangle 10^8 \text{m/s}$	B $2.25 \times 10^8 \mathrm{m/s}$	© 2×10^8 m/s	(D)	1.24×10^8 m/s A	
16.	An object is at 20 cm in front of a plane mirror. The mirror is moved 10 cm away from the object, then the distance between the two positions of the image					
	② 20 cm	B 15 cm	© 10 cm	(D)	25 cm	
17 .	•	d the reflected ray from ngle of incidence be xº		nuti	ually perpendicular	
	A 20°	B 15°	© 35°	(D)	25°	
18.	If R is the radius of o	curvature of a spherica	l miror and f is its foca	al le	ngth, then:	
		$\mathbf{B} R = \frac{f}{2}$	\bigcirc $R = 3f$	(R = 2f	
19.	If the angle of incide	ence (for reflection)is 3	30°, then angle of devi	atio	n is	
	A 90°	B 110°	© 100°	(D)	120°	
20.	If the focal length of medium, its new foc	a concave mirror is 20 cal length is	cm, then if the mirror	is k	ept inside kerosene	

© 20 cm

② 25 cm

B 15 cm

(A) 10 cm

21. The value of the expression

 $_a\mu_b \times _b\mu_c \times _c\mu_a =$

 \triangle >1

B <1

 \bigcirc =1

- Insufficient data
- **22.** A glass paper weight in the form of glass slab is kept over a cross mark (X) on a white sheet. The thickness of glass slab is 3cm and refractive index is 3/2. Then apparent shift of cross mark, when viewed almost vertically normal to the top surface from air, is
 - A 2cm
- **®** 1.5 cm
- © 1 cm
- **©** 0.5 cm
- 23. eye 0 eye

With reference to above figure, an air bubble is located at o, which is inside the glass slab of thickness d. The apparent position of air bubble from both sides when viewed normally from the horizontal direction is 2cm for each view. Then thickness of slab is (given ri of glass is 3/2)

- **A** 6 cm
- **B** 2 cm
- © 3 cm
- ① 4 cm

With reference to the diagram sin i =

(A) 1/9

B 4/9

© 2/9

© 8/9

25.

With reference to the above diagram, the value of angle of refraction, when ray is transmitted from air to glass is

A 20°

B 30°

© 28°

© 60°

26.	Which gas is evolved	d when metal carbona	te and bicarbonate sa	llts react with acids?		
	\bigcirc O ₂	\bigcirc CO ₂	© H ₂	\bigcirc N ₂		
27.	What is the pH of an	acidic solution?				
	(A) Greater than 7	B Equal to 7	© Less than 7	© Greater than 10		
28.	The acid produced i	n our stomach is				
	Sulphuric acid	Hydrochloric acid	d© Acetic acid	Oxalic acid		
29.	The pH of a sample sample 'Y'?	'Y' at 298 K is found	to be 10. Which of th	e following may be the		
	♠ NaOH	B HCl	© H ₂ O	© CH ₃ COOH		
30.	When dilute HCl is a is	ndded to granulated zir	nc placed in a test tube	e, the observation made		
	(A) the surface of the	e metal turns shiny	B the reaction mixt	ure turns milky		
	© odour of chloring	e is observed	a colourless and	odourless gas evolved		
31.	What is the effect or	HCl on litmus?	15			
	(A) red turns into blu	ıe				
	® blue turns into re	ed /	G			
	© no effect on both	111011				
	_	on both blue and red li				
32.	pH values of 4 solut according to their na		8, 9, 10 respectively. I	Put them in a sequence		
	A acidic, acidic, ne	utral, basic	B acidic, neutral, basic, basic			
	© acidic, acidic, aci	idic, neutral	neutral, basic, ba	sic, basic		
33.	When NaOH reacts gas is	with zinc granules the	en the product forme	ed along with hydrogen		
	Soduim oxide	Sodium peroxide	© Sodium zincate	\bigcirc Sodium + O_2 gas		
34.	Which salt is formed	d by the raction betwe	en strong acid and we	eak base?		
	♠ CH ₃ COONa	$lacksquare$ K_2SO_4	\bigcirc (NH ₄) ₂ SO ₄	○ CH ₃ COONH ₄		
35.	General antacids co	ntain				
	(A) КОН	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	© NaOH	\bigcirc Mg(OH) ₂		

36.	Indicators differenti	ate acids and bases by	z ch	anging		
	(A) temperature		$oldsymbol{\mathbb{B}}$	reaction time		
	© colour of the med	lium	(D)	boiling point		
37.	In alkaline medium,	medium, which colour is shown by phenolphthalein indicator?				licator?
	A Blue	B Red	©	Pink	(D)	Colourless
38.	Which is the correct	product when metal	oxic	le reacts with acids	s?	
	Salt + water		B	$metal + O_2 gas + v$	vate	er
	© salt + H_2 gas + H_2	O	(D)	$metal + O_2 gas + v$	vate	er
39.	Curd is not placed in	nside copper containe	rs b	ecause		
		lid	B	Water present in	cur	d starts vapourizing
	© Curd startes to re	act with oxygen	_	Curd starts to rea		-
40.	Which of the followi	ng cannot change the	blu	e colour of litmus	into	red?
	Tomato juice			NaHCO ₃ solution		
	© Tamarind juice		(D)	Oxalic acid soluti		
41.	Respiration is consid	dered as an exothermi	ic re	eaction because		
	Mass of product of			Mass of product i	ncr	eases
	© Energy is absorbe	ed Q	(D)	Energy is released	d	
42.	When quick lime rea	cts with water then ca	lciu	m hydroxide is for	med	l. It is an example of
	Combination rea	ction	B	Displacement rea	actio	on
	© Double displacer	nent reaction	(D)	Decomposition r	eact	tion
43.	Which type of decor	nposition causes the f	orn	nation of CaO and	CO ₂	₂ from CaCO ₃ ?
	Electrolytic decor	mposition	$^{f B}$	Thermal decomp	osit	ion
	© Photochemical d	ecomposition	(D)	Aqueous decomp	osi	tion
44.		de reacts with sodium	sul	phate then the col	our	of the precipitation
	is O P					T.T
. –	A Brown	B yellow		green		White
45.	_	osition of water in pre		_	_	
	$\mathbf{A} \ \mathbf{H}_2 \mathbf{O}_2 + \mathbf{O}_2$	\blacksquare H ₂ O ₂ + H ₂	©	$H_2 + O_2$	(D)	$H_2O_2 + H_2 + O_2$
46.	Rancidity can be pre	evented by adding				
	(A) anti-oxidants to f	oods	_	acid to foods		
	© water to foods		(D)	oxygen gas to foo	ds	

47.	When foods having (a) rancidity increas (b) rancidity remain		lacksquare	rancidity decrease	es edicted about rancidity
48.	CH₃COOH is a				
	Monobasic acid		B	Dibasic acid	
	© Tribasic acid		(D)	Cannot be predic	ted about its basicity
49.	Maximum how mar	ny KOH molecules can	rea	ct with dilute H ₂ S0	O ₄ ?
	A 1	B 2	©	3	D 4
50.	Formic acid is prese	ent in the insect body.	The	molecular formula	a of this acid is
	(A) НСООН	® CH₃COOH	©	$H_2C_2O_4$	\bigcirc H ₆ C ₄ O ₄
		Mathen	าลเ	ics	
		Widonon			
51.	For what value of k , of lines?	lo the equations $3x - y$	+8=	= 0 and $6x - ky + 16 =$	0 represent coinciden
	$ riangle$ $ frac{1}{2}$	B $-\frac{1}{2}$	©	2 Q	◎ -2
52.	If $x = a$, $y = b$ is the values of a and b are		of e	equations $x - y = 2$	and $x + y = 4$, then the
	(A) 3 and 1	® 3 and 5	©	5 and 3	◎ -1 and -3
53.	The sum of the diginumber get reverse	_	oer	is 9. If 27 is added	l to it, the digits of the
	A 25	B 72	©	63	© 36
54.	The value of k for v solution is	which the system of e	qua	tions $x + 2y = 5$, 3.	x + ky + 15 = 0 has no
	A 6	B -6	©	$\frac{3}{2}$	None of these
55.	If a pair of linear equations are	uations in two variable	es is	consistent, then the	ne lines represented by
	A intersecting		lacksquare	parallel	
	© always coincider	nt	(D)	intersecting or co	incident
56.	The area of the trian (A) 36 sq. units	gle formed by the line 8 18 sq. units	•	= x , $x = 6$ and $y = 0$ if y	is © 72 sq. units

[7]

57.	If the system of equations $2x + 3y = 5$, $4x + ky = 10$ has infinitely many solutions, then $k = 10$					
	(A) 1	B $\frac{1}{2}$	© 3	(D)	6	
58.	If the pair of linear evalue of k is	equations $x - y = 1$, $x +$	ky = 5 has a unique so	luti	ion $x = 2$, $y = 1$, then	
	⋒ −2	B 3	© -3	(D)	4	
59.	The pair of linear eq	uations $7x - 3y = 4$, $3x$	$+\frac{k}{7}y = 4$ is consistent	on	ly when	
		B $k = -9$	© $k \neq -9$	(D)	$k \neq 7$	
60.	_	es of a father and his s 550, then the age of fat	•	twic	ce the difference of	
	A 45 years	B 40 years	© 50 years	D	55 years	
61.	A fraction becomes	$\frac{4}{5}$ when 1 is added	to each of the numer	ator	and denominator.	
	However, if we subtr	ract 5 from each then	it becomes $\frac{1}{2}$. The fra	ctio	n is	
		(B) $\frac{5}{6}$	$\odot \frac{7}{9}$	(D)	$\frac{13}{16}$	
62.		o tables cost ₹1850. F chair and one table is		able	s cost ₹2850. Then	
	(800 	® ₹850	© ₹900	(D)	₹950	
63.	If $x + \frac{y}{2} = 5 \& \frac{x}{2} + y =$	11	NDII -			
	(a) $x = 1, y = 2$	(B) $x = 3, y = 4$	© $x = 2, y = 2$	(D)	x = 3, y = 3	
64.	If $\frac{2}{x} + \frac{3}{y} = \frac{9}{xy} & \frac{4}{x} - \frac{9}{y}$	$\frac{9}{y} = \frac{3}{xy}$, then				
	(a) $x = 3, y = 1$	(B) $x = 1, y = 3$	© $x = 1, y = 1$	(D)	x = 2, y = 2	
65.	If $\frac{x}{a} = \frac{y}{b}$ & $ax + by =$	$a^2 + b^2$, then				
	If $\frac{x}{a} = \frac{y}{b} & ax + by = 0$ (A) $x = a, y = b$	B $x = b, y = a$	© $x = a/2, y = b/2$	(D)	x = b/2, y = a/2	
66.	The value of $\sqrt{3\sqrt{3\sqrt{3}}}$	$\sqrt{3\sqrt{3}}$ is				
	(A) 0		B 3			
	© Both 0 and 3		© Can't be determine	ned		

67.	The number $\sqrt{14+6}$	$\sqrt{5} + \sqrt{14 - 6\sqrt{5}}$ is				
	 is a rational num simplifies to 5	ber	B is not a rational nD simplifies to 7	is not a rational number simplifies to 7		
68.	The least perfect squ	are number which is	divisible by 8, 15, 20, 2	22 is		
	(A) 435600	B 43560	© 39600	D 465660		
69.	If $-\frac{1}{3}$ is the zeros of	the cubic polynomial	$f(x) = 3x^3 - 5x^2 - 11x -$	3 the other zeros are		
	(A) −3, −1	B 1, 3	© 3, -1	◎ -3, 1		
70.	If α , β are zeros of ax	$x^2 + bx + c$ then zeros of	of $a^3x^2 + abcx + c^3$ are			
	$\triangle \alpha \beta, \ \alpha + \beta$	B $\alpha^2 \beta$, $\alpha \beta^2$	© $\alpha\beta$, $\alpha^2\beta^2$	\bigcirc α^3, β^3		
71.	The value of k for where zero solution is	nich the system of equ	nations $3x + 5y = 0$ and	kx + 10y = 0 has a non-		
	(A) 0	B 2	© 6	© 8		
72.	1 4 41			21 has infinitely many		
	(A) $a = 1, b = 5$	B $a = 5, b = 1$	© $a = -1, b = 5$	① $a = 5, b = -1$		
73.	In the equations 3x equations are			x and y that satisfy the		
	(2, 3)	(B) (3, 2)	\bigcirc $\left(\frac{1}{2}, \frac{1}{3}\right)$			
74.	Which of the follow	ring system of equatio	ns has no solution?			
	(A) $3x - y = 2$, $9x - 3y$	= 6		y - 7x + 9 = 0		
	© $3x - 5y - 11 = 0$, 6.	x - 10y - 7 = 0	None of these			
75.	The value of $x + y$ in	the solution of equat	ions $\frac{x}{4} + \frac{y}{3} = \frac{5}{12}$ and $\frac{x}{2} + y$	y=1 is		
			© 2	① $\frac{5}{2}$		
•		Biolo	ogy	•		
76.	Respiratory structur	es in the insects are—	-			
	♠ Gills	Skin	© Lungs	① Trachea		

77.	Absorb carbon diAbsorb oxygen pro	emonstrating respirati ioxide present in the fl resent in the flask oour released by the se	ask.		ds,	KOH is used to :
	_	to be used by the seeds		O		
78.	Epiglottis guards the	e opening of—				
	Oesophagus	B Eustachian tubes	©	Larynx	(D)	Internal nares
79.	Vocal cords occur in	l				
	A Pharynx	B Larynx	©	Glottis	(D)	Bronchial tube
80.	Which one of the fol	llowing is connected w	vith	transport of water	in p	olants?
	A Phloem		©	Epidermis	(D)	Cambium
81.	Transpiration in pla	nts takes place throug	h:			
	Stomata	B Cuticle	©	Lenticels	(D)	All of these
82.	The factors which af	fect the rate of transpi	rati	on is—		
	Speed of wind	교	lacksquare	Temperature		
	© Surface area of le	af	(D)	All of the above		
83.	Which of the followi	ng is the respiratory s	ubs	trate—		
	Stored food	B Fats	©	Glucose	(D)	Proteins
84.	Respiration by lungs	s is called—				
	Pulmonary respin	ration	f B	Cuticular respirat	ion	
	© Branchial respira	tion	(D)	Cutaneous respira	atio	n
85.	The exchange of gas	es between the extern			ccur	rs in the—
	A Bronchus	Bronchiole	©	Trachea	(D)	Alveoli
86.	Trachea branches in					
	Alveoli	B Bronchioles	©	Bronchi	(D)	Oesophagus
87.	Life span of human	_	_		_	•
	A 45 days	® 80 days	©	120 days	(D)	150 days
88.	Alveoli are surround	•				
	Arteries	(B) Veins	(C)	Capillaries	(D)	None

89.	. Eosinophil, basophil and neutrophil are types of						
	RBCs	lacksquare	Proteins	©	Platelets	(D)	WBCs
90.	Fluid part of blood,	afte	r removal of coagu	late	ed corpuscles is		
	A Plasma	lacksquare	Lymph	©	Serum	(Vaccine
91.	Which of the followi	ng l	has no digestive en	zyn	ne?		
	Saliva	lacksquare	Bile	©	Gastric juice	(D)	Intestinal juice
92.	Organisms feeding of	n d	lead and decaying	ma	tter are called—		
	A Parasites	lacksquare	Herbivores	©	Saprotrophs	(D)	Insectivores
93.	Name the organ that	t sto	ores bile				
	A Liver	lacksquare	Gall bladder	©	Stomach	(D)	Large intestine
94.	Amoeba shows		nutrition.				
	Saprotrophic	lacksquare	Parasitic	©	Autotrophic	(D)	Holozoic
95.	How many molecule during photosynthe			euti	llised to produce or	ne n	nolecule of glucose,
	A 6	$^{f B}$	5	©	4	(D)	3
96.	Which of the followi	ng i	is not a part of the l	hun	nan respiratory sys	ten	1?
	A Nose	f B	Oesophagus	©	Trachea	(D)	Lungs
97.	Muscle cramps, dur	ing	a strenuous activit	y, is	caused due to the	aco	cumulation of
	Ethyl alcohol	lacksquare	Pyruvic acid	©	Water	(D)	Lactic acid
98.	Sphygmomanomete	er m	easures				
	A Blood volume	lacksquare	Heart beat	©	Blood pressure	(D)	Cardiac output
99.	The number of chan	nbe	r(s) in a fish's heart	t is/	are—		
	(A) 1	lacksquare	2	©	3	(4
100.	Which among the f	ollo	wing has the thick	est	wall?		
	A Right atrium	lacksquare	Left atrium	©	Right ventricle	(D)	Left ventricle

Space For Rough Works

Space For Rough Works

