

Monthly Progessive Test

Class: XI

Time: 180 mins Full Marks: 200

Important Instructions:

- 1. The Test is of 180 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0210052024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scrible or write on or beyond discrete bars of OMR sheet at both sides**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

1.	If <i>E</i> and <i>G</i> respect dimensions of	ivel	y denote energy a	and	gravitational con	star	nt, then $\frac{E}{G}$ has the			
	$(M^2][L^{-2}][T^{-1}]$	$^{f B}$	$[{ m M}^2][{ m L}^{{\scriptscriptstyle -1}}][{ m T}^0]$	©	$[M][L^{-1}][T^{-1}]$	(D)	$[\mathrm{M}][\mathrm{L}^0][\mathrm{T}^0]$			
2.	Dimensions of stres	s ar	re							
	(MLT ⁻²)	B	$[\mathrm{ML^2T^{-2}}]$	©	$\left[\mathrm{ML^0T^{-2}} ight]$	(D)	$[ML^{-1}T^{-2}]$			
3.	The dimensions of h	eat	capacity are							
	[ML ⁻² T ⁻² A ⁻¹]	B	$[ML^2T^{-2}K^{-1}]$	©	$[M^{-1}L^2T^{-2}K^{-1}]$	(D)	[MLT ⁻² K]			
4.	If the result of physi	cal	quantity expressed	ed in different unit (using $n_1 u_1 = n_2 u_2$)						
		₿	$n \alpha u^3$	©	$n \alpha u^{-1}$	(D)	$n \alpha u^{-2}$			
5.	π is									
	 dimensionless quantity both (a) and (b) are correct				B has a unit					
					none of the above is correct					
6.	The pair of quantities	aving same dimens	asions is							
	Impulse and surface tension			Angular momentum and work						
	© Work and torque			Young's modulus and energy						
7.	S. I unit of force is		0/	M	DIAG					
	(A) watt	$^{f B}$	dyne	©	newton	(D)	poundal			
8.	18/5 Km/hr =									
	ⓐ 10 m/s	B	0.1 m/s	©	1 m/s	(D)	100 m/s			
9.	$0.8 \mathrm{g/cc} =$									
	\triangle 80 kg/m ³	$^{f B}$	8 kg/m^3	©	0.8 kg/m^3	(D)	$800 \mathrm{Kg/m^3}$			
10.	The unit used to exp	res	s the distance of st	ars						
	A Parsec	B	m	©	mile	(D)	cm			
11.	10 ¹⁵ Fermi =									
	(A) 1 cm	B	10 cm	©	1 m	(D)	10 m			
12.	[Velocity gradient] =	=								
	\bigcirc MLT	B	LT	(C)	T^{-1}	(D)	I.			

13.	[Linear momentum] (a) MLT		MLT^{-1}	©	L	(D)	LT
14.	[Escape velocity] =	₿	LT	©	LT^{-1}	(D)	ML
15.	[Refractive index] = ② Dimensionless	B	ML	©	LT	(D)	MT
16.	1 newton = x dyne the 10^4		$x = 10^5$	©	10^6	(D)	10^7
17.	1 joule = y erg then y (a) 10 ⁴		10^5	©	10^6	(D)	10^7
18.	1 litre = z cc then z = <a> 100		10	©	1000	(D)	1
19.	If two vectors of equivalent is 120°, then magnit	ude		is	at a point and ang		
20.	A person has walked of displacement is	l 3n	n towards East and	the	n 4m towards Nor	© th, t	_
	⊘ 7m		5m //D\P				4.5m
21.	If Kinetic energy = expression is dimen				ass and v is for v	eloc	city, then the given
	 correct some times correct	ct			not correct none of these		
22.	In the given formul whereas F stands for			m i	s mass, v is veloc	ity a	and r is the radius,
	MLT	B	dimensionless	©	MLT^2	(D)	MLT
23.	In Force (F)-acceler		•				
	♠ FA		FA ²		F^2A		none of these
24.	In Energy (E)-Veloci VT	•	V)-Time (T) systen VT²		ie dimensional for $ m V^2T$		la of length is none of these

25.	5. While calculating a potential difference across a resistor by using formula $V = I.R$, the percentage error in current I be 1 percent and in resistance (R) be 0.5 percent, the maximum percentage error of potential difference is								
	A 1	B	2	©	1.5	(D)	2.5		
•—			C hemi	st	ry		•		
26.	The weight of oxygen in one mole each of Fe ₂ O ₃ and FeO is in the simple ratio of								
	A 3:2	B	1:2	©	2:1	(D)	3:1		
27.	A sample ammonium phosphate $[(NH_4)_3PO_4]$ contains 6.36 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is (atomic mass : $N = 14$, $H = 1$, $P = 31$, $O = 16$)								
	(A) 4.24 mole	B	2.12 mole	©	5.45 mole	(D)	3.36 mole		
28.	8. The number of atoms present in a 0.635 gm of Cu is $[N_A = 6.02 \times 10^{23}]$ and atomic mass copper = 63.5						and atomic mass of		
	\triangle 6.02 × 10 ²²	$^{f B}$	6.02×10^{20}	©	6.02×10^{21}	(D)	6.02×10^{19}		
29.	A signature, written in carbon pencil weighs 1.2 mg. What number of carbon atorpresent in the signature [atomic mass of carbon = 12]?						er of carbon atoms		
	\triangle 6.02 × 10 ²²	B	6.02×10^{20}	©	6.02×10^{21}	(D)	6.02×10^{19}		
30.	The number of sign	ifica	ant figures in 6.02	× 10	²³ is				
	A 3	B	4	©	5	(D)	6		
31.	The maximum num	ıber	of molecules pres	ent	in				
	\triangle 15 L H ₂ gas at ST	P		lacksquare	$5 L N_2$ gas at STP				
	© $0.5 \text{ gm of H}_2 \text{ gas}$			\bigcirc 10 gm of O_2 gas					
32.	The mass of 112 ml	of C	CH ₄ gas at STP [ator	mic	mass : C = 12, H =	1] is	8		
	a 0.08 gm	B	0.8 gm	©	0.16 gm	D	0.016 gm		
33.	2 gm hydrogen is pro constant the ratio o		•	_		tely	. Keeping hydrogen		
	A 1:2	B	2:3	©	3:4	(D)	2:5		
34.	Consider the reacti gm N ₂ gas reacts co					be	produced when 5.6		
	(A) 11.4 gm	B	10.2 gm	©	6.8 gm	(D)	17.4 gm		

- **35.** In the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ which of the following statement is wrong when 150 ml H₂ gas is reacting? **(A)** 100 ml N₂ will react completely

 - **®** 100 ml NH₃ will be the final product
 - © 50 ml N₂ will react completely
 - © Total volume of the reactant side is 200 ml
- **36.** When 2 volume H_2 reacts with 1 volume O_2 to form water then the total unreacted volume of gas is
 - **(A)** 0.25 volume
- **B** 1.5 volume
- © 0.125 volume
- © zero volume
- **37.** If Avogadro number is 6.02×10^{23} , then the correct number of molecules in $0.016~{\rm gm~O_2}$ is 3.01×10^{X} . What is the correct value of $\underline{X'}$? [O = 16]
 - A 21

B 19

 \bigcirc 22

© 20

- 38. One atomic mass unit is equal to
 - **(a)** The mass of $\frac{1}{20}$ th mass of one neon atom (20)
 - **(B)** The mass of $\frac{1}{23}$ th mass of one sodium atom (23)
 - © the mass of $\frac{1}{6}$ th mass of one lithium atom (6)
 - No option is correct
- **39.** The correct option about 1 gm $CaCO_3$ (MW = 100) is

 - (a) 3.01×10^{22} CaCO₃ molecules (b) 6.02×10^{21} CaCO₃ molecules
 - © 0.1 mole CaCO₃ molecules
- \bigcirc 3.01 × 10²¹ CaCO₃ molecules
- **40.** Which of the following is the highest number of moles among the given options? [Cl = 35.5]
 - **♠** 0.01 mol Cl₂

® 0.355 gm Cl₂

© 0.071 gm Cl₂

- \bigcirc 6.02 × 10²⁰ Cl₂ molecules
- **41.** Zetta = 10^X and Yocto = 10^Y . The value of (X + Y) is
 - \triangle + 3

(B) + 6

- \bigcirc -6
- **42**. The isotopes and their percentage data are given below.

Isotope	Percentage of abundance
$_{18}{\rm Ar}^{36}$	7.1%
₁₈ Ar ³⁸	16.3%
₁₈ Ar ⁴⁰	76.6%

50.	In which of the folloo [C = 12, F = 18, O = 1] \textcircled{O} CF_4 \textcircled{O} $CO(NH_2)_2$		_	(B) (D)	CO No option is corr		is more than 40% ?
50.	[C = 12, F = 18, O = 1 \bigcirc CF ₄		_	B	СО		is more than 40% ?
50.			_	pero	C	(12)	is more than 40% ?
49.	A hydrate of Na_2SO_3 23, S = 32, O = 16, H (a) $Na_2SO_3.5H_2O$	= 1]	s 50% water by ma	ss. T	he correct formul	a of	the hydrate is [Na =
TO.	O = 16, Avagadro nu a 0.355 gm Cl_2 b 0.112 L N_2 gas at	mb	$er = 6.02 \times 10^{23}$]?	®	1.204 × 10^{23} O ₂ m (a), (b), (c) all are	oloc	vuloc
	A container has 3.05 gas is introduced in what is the final mu ② 0.65 mole Which of the follows	nsic nbe B	le that container. Ir of moles of gas in 0.065 mole	If the n that	ey are not reactin at container? 0.75 mole	g w	ith each other then
4-	10^{23} ? (A) 6.02×10^{21}		6.02×10^{22}	_	6.02×10^{23}		6.02×10^{20}
46.	What is the number	of	atoms in 20 gm C	aCC	$_3$ (MW = 100) Avo	gad	ro number = 6.02 ×
45.	Percentage of oxyge @ 68.5%		$_{1}$ $H_{2}SO_{4}$ is $[S = 32, 65.3\%]$		16, H = 1] 62.3%	(D)	67.4%
44.	Correct order of per \bigcirc N ₂ O > NO > NO ₂				_		
43.	If Avogadro numbe hydrogen moleccule (a) 301×10^{21}	es?	6.02×10^{23} , then 301×10^{20}		many electrons 301×10^{19}		present in 0.05 gm 301×10^{22}
	(A) 40.40	B	39.67	©	39.39	(D)	40.49

© {1, 4, 3}

(3, 4, 6)

B {1, 2, 3}

None of these

52.	If <i>P</i> is the set of all parallelograms and <i>T</i> is the set of all trapeziums, then $P \cap T$ is								
	A P	lacksquare	T	©	ϕ	(D)	None of these		
53.	Which of the following cannot be the number of elements in the power set of any finitest?								
	A 26	lacksquare	32	©	8	(D)	16		
54.	A survey shows that the Americans like b					'6%	like apples. If x% of		
	(A) $x = 39$	lacksquare	<i>x</i> = 63	©	$39 \le x \le 63$	(D)	None of these		
55.	If $n(A \times B) = 45$, then	n(A) cannot be						
		lacksquare	17	©	5	(D)	9		
56.	If <i>R</i> is a relation from then the number of				ements to a finite s	et <i>B</i>	having n elements,		
		lacksquare	2^{mn} – 1	©	2mn	(D)	m^n		
57.	Let R be a relation fr	om	a set A to a set B, t	hen	ı				
		$^{f B}$	$R = A \cap B$	©	$R \subseteq A \times B$	(D)	$R \subseteq B \times A$		
58.	The set of intelligent	stu	dents in a class is		72				
	a null set		1/2	$^{\otimes}$	a singleton set				
	© a finite set		MOINDIA	(D)	not a well -define	d co	ollection		
59.	Which of the following	ng	is the empty set						
	\triangle {x: x is a real num	nbe	r and $x^2 - 1 = 0$ }	$^{f B}$	$\{x: x \text{ is a real num}\}$	ber	and $x^2 + 1 = 0$		
		nbe	r and $x^2 - 9 = 0$ }	(D)	${x: x \text{ is a real number and } x^2 = x + 2}$				
60.	If $A = \{x : -3 < x < 3, x < $	$c \in \mathcal{I}$	Z} then the numbe	r of	subsets of A is				
		B	30	©	31	(D)	32		
61.	The set $A = \{x : x \text{ is a } \}$	_	-						
	(a) {1,2,3,5,7}	B	{1,3,5,7,9}	©	{2,3,5,7}	(D)	{1,3,5,7}		
62.	If $f(x) = x^3 - (1/x^3)$, the	nen _.	f(x) + f(1/x) is equa	al to					
		B	$2/x^{3}$	©	0	(D)	1		
63.	$If f(x) = x^2 + 2, x \in R,$	the	n the range of $f(x)$	is					
	$(2, \infty)$	lacksquare	$(-\infty, 2]$	©	$(2, \infty)$	(D)	$(-\infty, 2)$ U $(2, \infty)$		

		L'.	J						
64.	Two functions f and	Two functions f and g are said to be equal if							
	lacktriangle the domain of $f =$	the domain of g	B the co-domain o	of f = the co-domain of g					
	\bigcirc $f(x) = g(x)$ for all .	x	all of above						
65.	The domain of the	The domain of the function $f(x) = 1/(x^2 - 3x + 2)$ is							
	(● {1, 2}	® R	© R - {1, 2}						
66.		\in N} and $Y = \{9 (n-1) :$							
	igorphi X	(B) Y	© N	None of these					
67.		ltiple of 3} and $B = \{x : \\ $ (B) $\{5, 10, 15, 20,$	_						
68.	In a class of 30 pup	oils 12 take needls wo e at least one subject a	rk, 16 take physics ar	nd 18 take history. If all ree, then the number of					
CO				U 20					
69.	 A is a finite set nav ♠ 2n elements	ving n elements, then \mathbf{B} 2^n elements	$P(A)$ nas \bigcirc n elements	None of these					
70.	Let $n(U) = 700$, $n(A)$	(a) = 200, n(B) = 300 and	$\ln(A \cap B) = 100$. Then	n , $n(A^c \cap B^c) =$					
	A 400	® 600	© 300	© 200					
71.	Range of the function	on $f(x) = 9 - 7 \sin x$ is	CR-						
			© [-1, 1]	(2, 16)					
72.	The range of $f(x) = \frac{1}{1}$	$\frac{x}{+x^2}$ is							
73.	A function is called	even function if its gra	aph is symmetrical w.	r.t.					
	A Origin		\bigcirc $y=0$						
74.	Which of the follow	ing functions is odd?							
	\triangle tan x	$lacksquare$ $\cos x$	© $\sin(x^2 + 1)$	① $x + x^2$					
75.	Which of the follow {1, 2, 3, 4, 5, 6, 7, 8, 9		ion from A to B where	e $A = \{1, 2, 3, 4\}$ and $B =$					
	(1, 4), (2,6), (1,5)		® {(3, 3), (2,1), (1,2)), (2, 3)}					

© {(1, 2), (2,2), (3,2), (4, 2)}

① {(3, 1), (3,2), (3,3), (3, 4)}

Biology

76.	. Scientific study of diversity of organisms and their evolutionary relationships is—						
	Morphology	B	Anatomy	©	Taxonomy	(D)	Systematics
77.	Peritrichous bacteria All over the body		•	©	At both ends	(None
78	Mixotrophic nutritio			•	THE BOHL CHAS	0	Tione
10.	Navicula		Amoeba	©	Paramoecium	(D)	Euglena
79.	What is the common	n na	me of Sphagnum?				
	A Peat moss	B	Turf moss	©	Bog moss	(D)	All of the above
80.	Which one is called	a li	ving fossil?				
	Ginkgo	B	Cycas	©	Metasequoia	(D)	All of the above
81.	Which of the following	ng i	is not a feature of a	nne	elids?		
	Metameric segme	enta	ation		Nephridia		
	© Pseudocoelom	-		(D)	Clitellum		
82.	In which of the follow	1 1	-			•	•
	A Frog	B	Fish	(C)	Cockroach	(D)	Earthworm
83.	The basic unit of class		·VO	C			
	Species	B	Kingdom	(C)	Division	(D)	Order
84.	The term 'Chordata'						
	A Kingdom	B	Phylum	©	Class	(D)	Order
85.	The bacteria that car	ı re	side in extreme sal	•			
	Halophiles Recorbiles				Methanogens	0.0	
00	© Basophiles			(D)	Thermoacidophil		11
86.	Which of the following known and can surv	_	-	ely	lack cell wall, are t	the	smallest living cells
	A Mycoplasma	lacksquare	Euglenoids	©	Slime moulds	(D)	All of these
87.	Which of the followi	ng	are called vascular	cry	ptogams?		
	A Pteridophytes	B	Bryophytes	©	Gymnosperms	(D)	Algae
88.	Horse tails and ferns	s be	long to				
	Gymnosperms	B	Bryophytes	©	Mosses	(D)	Pteridophytes

Cnidoblasts help in—									
Movement	Paralysing the prey								
© Reproduction	Sensitivity								
The class consisting of the first jawless fish	nes, all of which are extinct now is—								
Ostracodermi	© Chondrichthyes © Osteichthyes								
Which of the following is the correct hiera to the most specific?	archy of taxonomic categories, from broadest								
	Kingdom								
Stingdom — Phylum — Class — Order — Family									
© Phylum — Kingdom — Order — Family — Class									
Singdom — Order — Class — Phylum -	— Family								
A binomial nomenclature consists of—									
Generic name and Phyla	® Class and Phyla								
© Generic name and specific epithet	Phyla and Kingdom								
Red tides in the sea are caused by—									
Dinoflagellates	© Slime moulds © Protozoans								
Mushrooms belong to—	20								
	Ascomycetes								
© Basidiomycetes	Deuteromycetes								
Name the pteridophyte given in the diagra	am below—								
	© Reproduction The class consisting of the first jawless fish. A Ostracodermi ® Cyclostomata Which of the following is the correct hierato the most specific? A Family — Class — Order — Phylum — 1 B Kingdom — Phylum — Class — Order — Family Phylum — Kingdom — Order — Family Kingdom — Order — Class — Phylum — A binomial nomenclature consists of— A Generic name and Phyla Generic name and specific epithet Red tides in the sea are caused by— A Dinoflagellates ® Euglenoids Mushrooms belong to— Phycomycetes								

- A Selaginella
- B Fern
- © Salvinia
- © Equisetum

96.	The sporophyte of B	ryo	phyte are different	iate	d into foot, seta an	d	_		
	A body	lacksquare	capsule	©	protonema	(D)	gemmae		
97.	A gymnosperm with	un	branched stem is-	_					
		lacksquare	Pinus	©	Cedrus	(D)	Ginkgo		
98.	The insects producing	ng h	noney and silk are-	_					
	⊕ Bombyx and Apis	s, re	spectively	lacksquare	Anopheles and Culex, respective				
	© Culex and Aedes,	pectively	(D)	Apis and Bombyx,	, res	pectively			
99.	Water vascular syste	m i	s observed in—						
	Coelenterates	lacksquare	Nematodes	©	Echinoderms	(D)	Molluscs		
LOO.	The feature(s) that a	are	characteristic of a	cho	rdate are				
	A Presence of a not	och	ord	lack	Presence of dorsa	al nerve chord			
	© Presence of phar	yge	al gill slits	(D)	All of the above				
		TEC	TO INDIA	C	250 250 250 250 250 250 250 250 250 250				

Space For Rough Works

Space For Rough Works

