

Monthly Progressive Test

Class: X

Subject: PCMB

Time: 180 mins Full Marks: 200

Important Instructions:

- 1. The Test is of 180 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0314062024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scribble or write on or beyond discrete bars of OMR sheet at both sides**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

1.	If the angle of incidence is 60° on a plane mirror, then angle of deviation δ is					
	A 30°	B 45°	©	60°	© 25°	
2.	When an object is placed between the pole and focus of a concave mirror, the image formed is:					
	(A) behind the ma	irror	B	virtual and erec	t	
	© larger than th	e object (or magnified)	(D)	all the above are	e correct	
3.	In case of concave reflector, a lighted bulb is placed at very large distance, the image is formed					
	(A) at centre of cu	ırvature	B	at focus		
	© at $\frac{f}{2}$ distance	from pole	(D)	at $\frac{3}{4}$ distance from	om pole	
4.	A concave mirror image will form a	has a focal length 10 cm at a distance of	. An	object is placed a	at 1000 cm from pole. The	
	20 cm from th	e pole	B	10 cm from the	pole	
	© 15 cm from th	e pole	(D)	25 cm from the	pole	
5.	If $_{air}n_{water} = 4/3 th$	nen _{water} n _{air} =				
	(A) 0.5	B 0.75	©	0.4	D 0.9	
6. If $_{air}\mu_{water} = 4/3$ then critical angle of water-air media pair is $[\sin 49^\circ = 3/4]$						
	A 42°	B 45°	©	49°	© 60°	
7.	. A vessel has depth 2d and is half filled by a liquid of r.i μ and the other half by another liquid of r.i 2μ , then when viewed perpendicularly, the apparent depth of the vessel					
	\triangle 3d/2 μ	\textcircled{B} 2d/3 μ	©	$3d/\mu$	4d/3μ	
8.	Speed of light in	different media is				
	Same		B	Unchanged		
	© Different		(D)	None of the abo	ove is correct	
9.	Speed of light is o	comparatively less in der	ıser	medium		
	A True	B False	©	Data insufficien	nt ② None of the above	
10 . Speed of light in vacuum (or air): speed of light in medium is						
	Absolute refra	active index of medium	lacksquare	Relative refracti	ve index of medium	

© Power index of medium

① Converging power of medium

44	D C 4	• 1	C ,	•
LL.	Refractive	: inaex	or war	er is

(A) 3/4

B 3/2

 \bigcirc 4/3

 $\bigcirc 9/8$

12. Speed of light in water =
$$Y \times 10^8$$
 m/s, then $y =$

 \triangle 2

B 2.25

① $\sqrt{2}$

13. When light enters a rarer medium, its speed increases and it bends away from normal

A False

B Some times false © True

Some times true

14. A pencil partially immersed in water appears to be bent because of

A Diffraction

Refraction

© Dispersion

(D) Interference

A Shifted slightly

No shift

© Shifting sometimes

Data insufficient

16. Select the non-luminous object

B Sun

© Moon

Burning candle

17. If the angle of incidence (for reflection) is 30°, then angle of deviation is

A 90°

B 110°

© 100°

120°

18. If the focal length of a concave mirror is 20 cm, then if the mirror is kept inside kerosene medium, its new focal length is

(A) 10 cm

B 15 cm

© 20 cm

© 25 cm

19.

With reference to the above diagram, the value of angle of refraction, when ray is transmitted from air to glass is

 \triangle 20°

B 30°

© 28°

© 60°

With reference to the diagram sin i =

 $\triangle 1/9$

B 4/9

 \bigcirc 2/9

© 8/9

- **21.** Speed of light in glass is
 - (A) $2.25 \times 10^8 \text{ m/s}$ (B) $2 \times 10^8 \text{ m/s}$
- © $1.25 \times 10^8 \,\text{m/s}$
- None of these

- **22.** r.i of water : r.i of glass =
 - A 8:9
- **B** 4:3

- © 3:2
- ① 1:2
- 23. Wavelength of violet light: Wavelength of Red light
 - \triangle < 1

(B) > 1

 \bigcirc = 1

- Data insufficient
- 24. In case of Total internal reflection, the angle of refraction when angle of incidence is at critical angle is
 - $\triangle > 90^{\circ}$
- $(B) < 90^{\circ}$
- © = 90°
- None of these

25.

If the angle between reflected ray and refracted ray be 90°, then $\mu =$

- A sin i
- ® cosi
- © tan i
- None of these

Chemistry

- 33. When NaOH reacts with zinc granules then the product formed along with hydrogen gas is
 - Soduim oxide
- B Sodium peroxide © Sodium zincate
- \bigcirc Sodium + O_2 gas

- **34.** General antacids contain

 (A) KOH

 (B) Ca(
 - \bullet Ca(OH)₂
- © NaOH
- \bigcirc Mg(OH)₂
- 35. Indicators differentiate acids and bases by changing
 - A temperature

B reaction time

© colour of the medium

- boiling point
- **36.** In alkaline medium, which colour is shown by phenolphthalein indicator?
 - A Blue
- B Red

- © Pink
- Colourless

Question number 37 and 38 are STATEMENT BASED MCQ. Select the correct answer

OPTION A: Both statement I and II are correct

OPTION B: Statement I is correct but statement II is wrong

OPTION C: Statement I is wrong but statement II is correct

OPTION D: Both statement I and II are wrong

- **37. Statement I :** In baking powder, slight oxalic acid is added to sodium bicarbonate **Statement II :** NaHCO₃ cannot produce CO₂ gas after reacting with dilute H₂SO₄ but Na₂CO₃ can
- **38. Statement I:** CaOCl₂ is an oxidising agent

Statement II : A small amount of Ca(OH)₂ can be applied for the relief after ant string touches human body

Question number 39 and 40 are ASSERTION - REASON type questions. Select the correct option

- OPTION A: Both assertion and reason is correct and reason is the correct explanation of assertion
- OPTION B: Both assertion and reason is correct and reason is not the correct explanation of assertion

OPTION C: Assertion is correct statement but reason is wrong statement

OPTION D: Assertion is wrong statement but reason is correct statement

- **39. Assertion :** To prevent acidity, NaOH solution is used instead of using Mg(OH)₂ solution **Reason :** NaOH is stronger alkali than Mg(OH)₂
- **40. Assertion :** NaOH solution turns red litmus paper blue instantly

Reason: NaOH can react with acids to form salts and water

- **41.** Which of the following is the main constituent of natural gas that burns with oxygen readily
 - A Sulpher dioxide B Methane
- © Nitrogen dioxide © Chlorine

42.	Consider the reaction NaOH + HCl \longrightarrow NaCl + H ₂ O. In this reaction A NaOH is oxidised and HCl is reduced							
	NaOH is reduced and HCl is oxidised							
	© Both NaOH and I			1				
	(D) Neither NaOH no	or HCl face oxidation	or re	eduction				
43.	-	Curd is not placed inside copper containers because						
	Curd becomes so							
	_	curd starts vapourizir	ng					
	© Curd starts to rea							
	© Curd starts to rea	ict with the metal						
44.	CH₃COOH is a			D.I				
	Monobasic acid		B		_			
	© Tribasic acid	7	(D)	Cannot be predic	cted	about its basicity		
45.	•	ide reacts with sodiun	ı su	lphate then the co	lour	of the precipitation		
	İS Proven	(R) yellow		amaan 3		INThito		
	A Brown	B yellow	O	green	(D)	White		
46.	Find out correct statement							
Ory HCl can change the colour of litmus Sulpher dioxide can react with NaOH When pitric acid and VOL reacts then NO. good is released.								
	© When nitric acid and KOH reacts then NO_2 gas is released O_2 can react with concentrated O_2 can react with concentrated O_2 can react with concentrated O_3 can react with concentrated O_4 can react with O_4 can react with concentrated O_4 can react with O_4 can react with concentrated O_4 can react with O_4 can re							
47	-	_	•	ton of owner 11:	~ 	O		
47.	Blue vitriol	ing salts does not com B Baking soda		Washing soda				
4.0		© Daking soua	•	wasiiiig soda	•	Gypsum		
48.	Pb(OH)Cl is a/an			NT 1 1.		D 11 1		
	Acidic salt	Basic salt	0	Normal salt	(D)	Double salt		
49.	$\mathrm{NH_4Cl}$ is							
	A salt of strong acid and weak base			A salt is weak acid and strong base				
	© A salt is weak aci	d and weak base	(D)	A salt is strong ac	cid a	nd strong base		
50.	Chemical formula o							
	\triangle Na ₂ CO ₃ .10H ₂ O	\blacksquare Na ₂ SO ₄ .5H ₂ O	©	$Na_2SO_4.10H_2O$	(D)	$MgSO_4.7H_2O$		

Mathematics -

- **51.** The values of *k* for which the equation $16x^2 + 4kx + 9 = 0$ has real and equal roots are
 - (A) 6, $\frac{-1}{6}$
- **B** 36, -36
- © 6, -6
- \bigcirc $\frac{3}{4}$, $-\frac{3}{4}$
- **52.** If y = 1 is a common root of the equations $ay^2 + ay + 3 = 0$ and $y^2 + y + b = 0$, then abequals
 - **(A)** 3

(B) -3.5

© 6

- \bigcirc -3
- **53.** If one root of the equation $4x^2 2x + (\lambda 4) = 0$ be the reciprocal of the other then $\lambda =$

- **54.** If $x^2 + k(4x + k 1) + 2 = 0$ has equal roots, then k = 1
- **B** $-1, \frac{2}{3}$ **C** $\frac{3}{2}, \frac{1}{3}$
- $-\frac{3}{2}, -\frac{1}{3}$
- **55.** If one root of the equation $ax^2 + bx + c = 0$ is three times the other, then $b^2 : ac = 0$
 - **A** 3:1

- **B** 3:16
- © 16:3
- **1**6:1
- **56.** If 2 is a root of the equation $x^2 ax + 12 = 0$ and the equation $x^2 + ax + q = 0$ has equal roots, then q =

16

- **6** 12 **8** 8 **57.** The value of $\sqrt{6+\sqrt{6+\sqrt{6+......}}}$ is
 - **(A)** 4

B 3

(c) -2

- © 3.5
- **58.** If $b^2 4ac \ge 0$, then the roots of quadratic equation $ax^2 + bx + c = 0$ are

- (A) $\frac{b}{2a} \pm \frac{\sqrt{b^2 4ac}}{2a}$ (B) $-\frac{b}{2a} \pm \frac{\sqrt{b^2 4ac}}{2a}$ (C) $\frac{b}{2a} \pm \frac{\sqrt{b^2 + 4ac}}{2a}$ (D) $-\frac{b}{2a} \pm \frac{\sqrt{b^2 + 4ac}}{2a}$
- **59.** If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to product of their reciprocals, then
 - $\triangle a^2 + bc = 0$
- **B** $b^2 + ca = 0$ **C** $c^2 + ab = 0$
- **(D)** b + c = 0
- **60.** The quadratic equation $ax^2 + bx + c = 0$ will have real and distinct roots if
 - (A) $h^2 4ac < 0$ (B) $h^2 4ac > 0$ (C) $h^2 4ac = 0$
- all the above

61. What are the roots of the equation whose graphed below?

- A 1 and 0
- **B** 0 and 2
- © -4 and 2
- ① 0 and 0
- **62.** What will be the difference of the roots of quadratic equation $4y^2 4y + 1 = 0$?
 - **(A)** 0

- **63.** If α , β be the roots of equation $4x^2 7x + 3 = 0$, then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ will be
 - A 25/12
- **B** 23/8
- \bigcirc 24/25
- © 24/23
- **64.** If one root is $3+\sqrt{5}$, then quadratic equation will be

 - (A) $x^2 + 6x 4 = 0$ (B) $x^2 + 6x + 4 = 0$ (C) $x^2 6x + 4 = 0$ (D) $x^2 6x 4 = 0$

- **65.** Discriminant of the equation $(-3)x^2 + 2x 8 = 0$ is
 - $\bigcirc -92$

B -29

© 39

- **(D)** 49
- **66.** If (x + a) is a factor of $2x^2 + 2ax + 5x + 10$, then the value of a is—
 - **(A)** 3

B 2

© 0

- ① 1
- **67.** For what value of k, 4 is a zero of the polynomial x^2 x (2k + 2)?
 - **A** 4

B 5

 \bigcirc 9

- **©** 8
- **68.** For what value of k, do the equations 3x y + 8 = 0 and 6x ky + 16 = 0 represent coincident lines?
 - $\triangle \frac{1}{2}$

B $-\frac{1}{2}$

 \bigcirc 2

 \bigcirc -2

69.	number get reversed. The number is 9. If 27 is added to it, the digits of the						
	A 25	lacksquare	72	©	63	(D)	36
70.	The area of the trian	gle	formed by the line	sy:	= x, $x = 6$ and $y = 0$ i	.S	
	▲ 36 sq. units	lacksquare	18 sq. units	©	9 sq. units	(D)	72 sq. units
71.	Mr. A and Mr. B tog product of the numb situation mathemat	er o	of marbles they nov				
		B	$x^2 + 45x + 324 = 0$	©	$x^2 - 45x - 324 = 0$	(D)	$x^2 + 45x - 324 = 0$
72.	Check whether the f	follo	wing is quadratic	equ	ation: $(x-2)^2 + 1 =$	2x	- 3
	A No	lacksquare	Yes	©	Cannot say	(D)	None of these
73.	Discriminant of the	equ	$ation (x+2)^3 = x^3$	- 4			
	A 8	lacksquare	4	©	-4	(D)	6
74.	Given: $x(x+1) + 8 =$	(x -	-2)(x-2), then $x =$				
	A 12	lacksquare	6	©	-6	(D)	-12
75.	The product of two	cons	secutive positive in	nteg	ers is 306. Then the	e int	tegers are
	(A) 17, 18	lacksquare	16, 17	©	18, 19	(D)	-17, -18
•			Biolo	gy			
76.	Water will be absorb	oed	by root hair when	:			
	Concentration of		-	is ł	nigh		
	B Plant is rapidly reThey are separate	_	•	able	emembrane		
	© Concentration of		• -				
77.	If the cut end of a pl	ant	is put in eosin solu	ıtio	n:		
	A Leaves remain from Phloem gets colo		-	_			

© Xylem elements get stained showing ascent of sap through them

Ascent of sap stops

78.	The carbohydrate synthesized in the leaves are transported through sieve tubes mostly in the form of :						
	(A) Glucose (B) Triose	© Sucrose © Soluble starch					
79.	Due to low atmospheric pressure, the rate (a) Increase (b) Decrease rapidly	te of transpiration will : B Decreases slowly D Remain unaffected					
80.	The transpiration in plants will be lowest: When there is high humidity in the atmosphere There is excess of water in the cell Environmental conditions are very dry High wind velocity 						
81.	The instrument used to measure transpirate B Barometer B Porometer	ration is : © Thermometer © Potometer					
82.	The rate of transpiration increases when: Soil is dry and air is humidSoil is wet and air is humid	: B Soil is wet and air is dry D Soil is dry and air is dry 					
83.	Role of transpiration is : © Conduction of water, mineral salts© Maintenance of cell turgidity	® Cooling effectD All of these					
84.	Which one of the following is connected was Phloem B Xylem	with transport of water in plants ? © Epidermis © Cambium					
85.	The principal pathway by which water is t (a) Xylem vessel system (b) Sieve tube of phloem	transported in angiosperms is— (B) Xylem and phloem (D) Sieve cells of phloem					
86.	Water available to the plant is— (a) Run off water (b) Hygroscopic water	B Gravitational waterD Capillary water					
87.	Transport of water through xylem in tall p	plants is best explained by—					
	A Root pressure theoryCapillary theory	B Pulsation theoryCohesion theory					
88.	Transpiration causes—						
	 Descent of sap Does not have any effect on sap	B Ascent of sapBoth A and B					

89.	Xylem conducts sap (A) Leaves to root		m— Roots to leaves	©	Root to stem	(D)	Stems to roots
90.	The main function of	of pł	nloem in plants is t	he o	conduction of—		
	A Food	B	Minerals	(C)	Water	(D)	All of the above
91.	Those organisms wh		_		•		
	Autotrophs	B)	Saprotrophs	(C)	Parasites	(D)	Holozoic feeders
92.	The end product of page 4. Glucose	-	tein digestion is— Fatty acids	©	Glycerol	(D)	Amino acids
93.	Which of the followi	ng	is not a part of the l	hur	nan respiratory sys	sten	n?
	A Nose	_	Oesophagus		Trachea		Lungs
94.	Muscle cramps, dur (A) Ethyl alcohol	_	a strenuous activit Pyruvic acid	•	s caused due to the Water	_	cumulation of Lactic acid
95.	Sphygmomanomete						
			Heart beat	©	Blood pressure	(Cardiac output
96.	Fat — A Fatty acids + B Identify the enzyme A and product B Amylase and maltose, respectively Maltase and maltose, respectively None of the above						
97.	If pyruvate breaks de	owr	n anaerobically, the	e nu	ımber of ATP mole	cul	es produced are
	(A) 1		2	©		(D)	4
98.	Bicuspid valve is present — Between the right atrium and right ventricle Between the left atrium and left ventricle Capacitation of the pulmonary artery At the base of the aorta						
99.	C-shaped rings of ca	ırtri	lage are present or	ı th	e —		
	A Trachea only			lacksquare	Trachea and bron	ichi	
	© Trachea, bronchi	an	d bronchioles	(D)	Bronchi and bron	chi	oles
100.	Transport through (a) Unidirectional (b) Bidirectional (c) Multidirectional (d) Yulam does not to			urt n	arocoss.		
	Sylem does not take part in the transport process						

Space For Rough Works

Space For Rough Works

