

Monthly Progressive Test

Class: XI

Subject: PCMB

Test Booklet No.: MPT06 Test Date: 0 3 1 0 2 0 2 4

Time: 120 mins Full Marks: 200

Important Instructions:

- 1. The Test is of 120 mins duration and the Test Booklet contains 100 multiple choice questions of single correct option only. There are four sections with four subjects. You have to attempt all 100 questions (Candidates are advised to read all 100 questions). Questions 1 to 25 contain Physics, Questions 26 to 50 contain Chemistry, Questions 51 to 75 contain Mathematics, Questions 76 to 100 contain Biology.
- 2. Each question carries 2 marks. For each correct response, the candidate will get 2 marks. There is no negative mark for wrong response. The maximum mark is 200.
- 3. Use Blue / Black Ball point Pen only for writing particulars marking responses on Answer Sheet.
- 4. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Off Line MPT0603102024.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your UID No. anywhere else except in the specified space. Use of white fluid for correction is NOT permissible on the Answer Sheet. **Do not scrible or write on or beyond discrete bars of OMR sheet at both sides**.
- 8. Each candidate must show on-demand his/her Registration document to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic Calculator/Cellphone is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 13. There is no scope for altering response mark in Answer Sheet.

Space For Rough Works

Physics

2. If the distance between the Sun and Earth is increased to twice then the F_{new} will

3. Two bodies having masses u and v are separated by a distance x, then the gravitational

® Is zero at the centre of Earth

Remains same everywhere

© Remain same

© Decrease by 25%

		$\bigcirc \frac{Gu.v}{x^2}$	$\odot \frac{Gu^2}{}$	$\bigcirc \frac{gu}{x^2}$
4.	If the masses of two	o objects are halved (vitation force between		between them is also
	$lacktriangleright F_{ m initial}$	$lacksquare$ $2F_{\text{initial}}$	© $0.5 \times F_{\text{initial}}$	\bigcirc 4 $F_{\rm initial}$
5.		fall from the top of a to ertically upwards from		t the same time another ocity of 25 m/s, then
	A Two stones meet	after 4 s at a height 10	m from the ground	
	B Two stones meet	after 4 s at a height of	20 m from the ground	l
	© Two stones meet	after 5 s	20	
	① Two stones meet	at a height of 30 m	WELL GY	
6.	If the weight of a boothan the radius of ea	•	and depth d (where h a	and d are much smaller
	A 1:2	® 1:3	© 1:4	© 1:1
7.		accelerations due to a whose mass and radiu		of the earth and on a earth, then
8.	•	faring of mass M and rough the centre of ma		onal axis perpendicular
		® R	\bigcirc $\frac{R}{2}$	None of these
9.		faring of mass M and rough the centre of ma		onal axis perpendicula
	$\bigcirc MR^2$		\bigcirc $\frac{MR^2}{2}$	None of these

1. The value of *G*

Decreases with height

© Increases with height

(A) Decrease by 75% **(B)** Increase 25%

force between them will be F =

10. Moment of inertia of a ring of mass M and radius R, about a rotational axis passing

through the diameter is

	$\bigcirc MR^2$		$\bigcirc \frac{MR^2}{2}$	None of these
11.	Radius of gyration through diameter in	_	nd radius <i>R</i> , about a	rotational axis passing
	♠ R			None of these
12.	Moment of inertia of tangent perpendicu	_	d radius <i>R</i> , about a ro	tational axis which is a
	$\bigcirc MR^2$		\bigcirc $\frac{MR^2}{2}$	\bigcirc $2MR^2$
Asse	ertion-Reason type (Questions (13-14):		
Dire	ections: Read the follo	owing questions and cl	noose any one of the fo	llowing four responses.
	A. If both Assertion Assertion.	and Reason are true	and Reason is the cor	rect explanation of the
	B. If both Assertion Assertion.	and Reason are true l	out Reason is not a co	rrect explanation of the
	C. If Assertion is tru	ie but the Reason is fa	lse.	
	D. If Assertion is fal	se but Reason is true.	C.S-	
13.	Assertion: Every poinstant of time.	oint in the rotating rig	id body has the same	angular velocity at any
		about a fixed axis, eve e perpendicular to the		body moves in a circle on the axis.
	A A	₿ B	© C	© D
1 4.	Assertion: Centre o	of gravity of an extende	d body may coincides	with its centre of mass.
	Reason: Coincides the other part.	only if gravitational fi	eld doesn't vary from	one part of the body to
	A A	® B	© C	© D
Case	e Study Based Quest	ion (15):		
	•	est is uniformly accele s and is finally brough		s. It is allowed to rotate s.
1 5.	The total angle rotar	ted by the wheel		
	(A) 800 rad	® 400 rad	© 600 rad	© 500 rad
Tech	no India Group ● DN-2	5 • Sector-V • Kolkata		

17. Two projectiles A and B are projected with angle of projection 15° for projectile A and

18. A projectile is given initial velocity of $(\vec{i} + 2\vec{j})$ m/s, g = 10m/s². The equation of its

© 6 m

 \bigcirc $R_A > R_B$

① 2 m

Insufficient data

16. For a projectile with initial velocity $\vec{u}(4\vec{i}+3\vec{j})$ m/s. The range is $(g=10\text{m/s}^2)$

B 4.8 m

 \mathbf{B} $R_A = R_B$

 45° for the projectile B. Then range R_{A} and R_{B}

A 2.4 m

 \triangle $R_A < R_B$

	trajectory			
	(A) $y = 2x - 5x^2$	(B) $4y = x - 5x^2$	© $4y = 2x - 5x^2$	① $y = x - 5x^2$
Asse	rtion-Reason type (uestions (19-20):		
Dire	ctions: Read the follo	wing questions and cl	noose any one of the fo	llowing four responses.
	A. If both Assertion Assertion.	and Reason are true	and Reason is the cor	rrect explanation of the
	B. If both Assertion Assertion.	and Reason are true b	out Reason is not a co	rrect explanation of the
	C. If Assertion is tru	e but the Reason is fal	lse.	
	D. If Assertion is fals	se but Reason is true.		
19.	Assertion: Elevation of projection is $\tan \theta$		ctile at its highest poin	at as seen from the point
	Reason: The project	ile is fired at an angle	of of 45° with the hori	zontal.
	A A	B B	© C	D
20.	Assertion: It is given	n that a particle has sp	eed $7\sqrt{2}$ unit after 10s	from start.
	Reason: The particle after 10 s from start.	e has initial velocity (3	3i + 4j) unit and accele	eration $(0.1i + 0.3j)$ unit
	A A	B B	© C	D
21.	centre and perpend	icular to the plane of ntact face to face coinc	disc with angular vel	ar axis passing through ocities ω_1 and ω_2 . They tion. The expression for
T1-	- In the Course - DN 20	- C		Cont

22.	A solid sphere of mass m and radius R is rotating about its diameter. A solid cylinder
	of the same mass and same radius is also rotating about its geometrical axis with an
	angular speed twice that of the sphere. The ratio of their kinetic energies of rotation
	$(E_{\rm sphere}/E_{\rm cylinder})$ will be

 $\triangle 2:3$

B 1:5

© 1:4

① 3:1

23. A child is standing with folded hands at the centre of a platform rotating about its central axis. The kinetic energy of the system is K. The child now stretches his arms so that the moment of inertia of the system doubled. The kinetic energy of the system now is

 $\bigcirc 2K$

 \bigcirc $\frac{K}{4}$

 \bigcirc 4K

24. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along

A line perpendicular to the plane of rotation

® The line making an angle of 45° to the plane of rotation

© The radius

The tangent to the orbit

25. A disc of radius 20 cm and mass $\frac{1}{2}$ kg is rolling on an inclined plane. Find out the frictional force such that disc performs pure rolling. (given $\theta = 45^{\circ}$)

(a) $\frac{5}{3\sqrt{2}}$ N (b) $\frac{5}{\sqrt{2}}$ N

Chemistry

26. Enthalpy of vaporization of a substance is 8400 J·mol⁻¹ and its boiling point is –173°C. The entropy of vaporization is

(A) $84 \text{ LK}^{-1} \cdot \text{mol}^{-1}$ (B) $21 \text{ LK}^{-1} \cdot \text{mol}^{-1}$ (C) $49 \text{ LK}^{-1} \cdot \text{mol}^{-1}$

 \bigcirc 12 I K⁻¹·mol⁻¹

27. Considering the following two equations, what is the value of the enthalpy of formation of nitric oxide in KJ·mol⁻¹?

 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) + X KJ$

 $2NO(g) + O_2(g) \rightarrow 2NO_2(g) + Y KJ$

 \triangle (2X - 2Y)

B (X – Y)

© 0.5(Y-X)

 $\bigcirc 0.5 (X - Y)$

- In which of the following process, a maximum increase in entropy is observed? 28. A Dissolution of saline water B Condensation of water © Sublimation of naphthalene Melting of ice **29.** Molar heat capacity of a gas at constant T and P is:

© infinity

- **(D)** depends on the atomicity of the gas.
- **30.** 5 mol of ideal gas at 27°C expands isothermally and reversibly from a volume of 6 L to 60 L. The work done in KI is
 - \bigcirc -14.7
- **B** -28.72
- \bigcirc +28.27
- \bigcirc +14.7
- **31.** Which of the following defines $\Delta_f H$ (Enthalpy of formation)?
 - \bigcirc C_(diamond) + O_{2(g)} \rightarrow CO_{2(g)}
- **B** $\frac{1}{2}$ H_{2(g)} + $\frac{1}{2}$ F_{2(g)} \rightarrow HF_(g)

 \bigcirc N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}

- **⑤** $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$
- **32.** Consider the following statements and select the correct option

Statement I: Methane is a polar molecule

Statement II: For all carbon atoms in butan - 1,3 - diene, the precentage of s - character is 33.33%

- Both statements are correct
- Statement I is correct and statement II is wrong
- © Statement I is wrong and statement II is correct
- D Both statements are wrong
- **33.** Consider the following equations and what will the value of heat of formation of C_2H_2 ?

$$C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(l)$$
 $\Delta H_1 = -1301 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$$
 $\Delta H_2 = -286 \text{ kJ}$

$$2C(g) + 2O_2(g) \longrightarrow 2CO_2(g)$$
 $\Delta H_3 = -787 \text{ kJ}$

- \triangle + 180 kJ
- **B** 800 kJ
- \bigcirc + 256 kJ
- \bigcirc + 228 kJ
- **34.** Reaction $H_2(g)+I_2(g)\longrightarrow 2HI$ $\Delta H=+12.40$ kcal. According to this, heat of formation of HI will be
 - \triangle + 12.40 kcal
- **B** 12.40 kcal
- © 6.20 kcal
- \bigcirc + 6.20 kcal

25	How endothermic reactions can	ha mada farrangahla 2
3 3.	How endothermic reactions can	i de made favourable 🤉

- A By increasing temperature
- By decreasing temperature
- © By increasing temperature at first then decreasing
- D By decreasing temperature at first then increasing

Case Study Based Question (36–37):

The properties that depend on mass are known as extensive properties and the properties that do not depend on mass are known as intensive properties. If two extensive properties are

divid an e	led by each other the	en an intensive prope ut any mathematical	rty is received while a	ddition of them result vo intensive propertie
36.	Which of the followi	ng is a unit less quant	ity?	
	♠ Reactive index		Molarity	
	© Normality		Heat content of the last content of the l	ne system
37.	Find out wrong state	ements		
	(I) All extensive prop	perties depend on ten	nperature	
	(II) Mole fraction is	an unitless quantity	C.P.	
	(III) Volume of an id	leal gas does not suffe	r any change with the	change in temperature
	(A) I, II, III	® I, II	© II, III	D I, III

Assertion Reason Type Question (38):

Read the two statements carefully and select the correct option given below.

A: Assertion and Reason both are correct and Reason is the correct explanation of Assertion

B: Assertion and Reason both are correct and Reason is not the correct explanation of Assertion

C: Assertion is correct but Reason is wrong

D: Assertion is wrong but Reason is correct

38. Assertion: Density is an intensive property

Reason: Density changes with the change in temperature of the system

 \triangle

 \bigcirc C

(D)

Case Study Based Question (39-40):

Entropy, enthalpy, Gibbs free energy all are extensive properties and state functions. They are mathematically related to each other by the relationship. Gibbs free energy is defined as the net useful work done by the system. If the process is spontaneous then Gibbs free energy change is negative and it is positive in case of a non-spontaneous process. At equilibrium, Gibbs free energy change is zero.

39. For a reaction, $\Delta H = -15 \text{ kJ.mol}^{-1}$ and $\Delta S = -420 \text{ J.K}^{-1}$. What is the value of Gibbs free energy change at 1000 K?

 \triangle - 405 kJ.mol⁻¹

 $(B) + 405 \text{ kJ.mol}^{-1}$ $(C) - 202.5 \text{ kJ.mol}^{-1}$ $(D) + 202.5 \text{ kJ.mol}^{-1}$

40. For a reaction $\Delta H = 21 \text{ kJ.mol}^{-1}$ and $\Delta S = 105 \text{ J.K}^{-1}.\text{mol}^{-1}$. At what temperature, the reaction will be at equilibrium?

A 200 K

B 2000 K

© 100 K

© 400 K

Ouestion number 41 is **ASSERTION - REASON TYPE QUESTION.** Select the correct option

- **41.** Assertion: NaI shows more water solubility than NaCl at constant temperature Reason: Higher the radius of anion, extent of hydration is higher
 - Assertion and reason both are correct and reason is the correct explanation of assertion
 - (B) Assertion and reason both are correct and reason is not the correct explanation of assertion
 - © Assertion is correct but reason is wrong
 - Assertion is wrong but reason is correct
- **42.** Consider the given equation $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$

Correct products are when 0.53 gm Na₂CO₃ is reacting completely [atomic weight : Na = 23, C = 12, O = 16, Avogadro number = 6.02×10^{23}

(A) 0.56 L CO₂ at STP and 6.02×10^{21} water molecules

- **B** 0.224 L CO_2 at STP and 3.01×10^{21} water molecules
- © 0.112 L CO_2 at STP and 3.01×10^{21} water molecules
- \bigcirc 0.112 L CO₂ at STP and 6.02 × 10²¹ water molecules
- **43.** The magnetic moment of M^{x+} (atomic number = 25) is $\sqrt{15}$ BM. The number of unpaired electrons and the value of 'x' respectively are

(A) 4, 3

B 3, 4

© 3, 2

② 5, 2

Case Study Based Question (44-45):

Electrons in the outer shell face repulsion and the order of the extent of repulsion is lone pair-lone pair > lone pair-bond pair > bond pair-bond pair. Due to this repulsion, some changes occur in the molecules or ions. The impact of this repulsion hampers bond length, bond angle, shape of the molecule, etc. Now, the lone pairs in the molecules or ions having ${\rm sp}^3{\rm d}$, ${\rm sp}^3{\rm d}^3$ hybridization are always placed at equatorial position not in axial positions. This is due to minimise the said repulsion.

44. The correct order of carbon - carbon bond length is

$$\bigcirc C_2H_6 > C_2H_4 > C_2H_2$$

B
$$C_2H_6 > C_2H_2 > C_2H_4$$

©
$$C_2H_2 > C_2H_4 > C_2H_6$$

$$\bigcirc C_2H_2 > C_2H_6 > C_2H_4$$

45. Find out wrong statements

(I) Oxygen-oxygen bond length in H_2O_2 is lower than that in O_2 molecule

(II) In ClF₃ molecule, one lone pair of chlorine is placed at axial position and other is at equatorial position

(III) There are two lone pairs on the central atom of XeF₄

(IV) BF₃ and NH₃ have same shapes

A I,II, III, IV

® I,II, III

© I, III, IV

D I,II, IV

46. The I.U.P.A.C name for the following compound is:

⊕ 3-bromo-3-methyl-1, 2-dimethyl prop-1-ene

® 3-bromo-1, 2-dimethyl but-1-ene

© 2-bromo-3-methylpent-3-ene

① 4-bromo-3-methylpent-2-ene

47.	How many	y are wrong nomenclature?
T	I I O VV I I I I I I I I	are wrong momentum .

(I)
$$H_2C = CHCH_2C \equiv CH$$

Pent - 4 - ene - 1 - yne

4 -methylnitrobenzene

2 - ketopentan - 5 - al

① I, III

48. Which molecule does not contain tertiary carbon atom?

® 2 - methylbutane

② 2, 3 - dimethylbutane

49. The I.U.P.A.C name of the compound having the formula
$$CH_2 = CH - CH(CH_3)_2$$
 is :

® 3-methyl-1-butene

None of these

50. Consider the following equation at 27°C and calculate the difference between $(\Delta H - \Delta E)$

$$2C_6H_6(l) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(l)$$

B + 3.7413 kJD - 7.4826 kJ

$$\bigcirc$$
 + 7.4826 kJ

Mathematics

51.
$$\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)$$
 is equal to

$$\bigcirc \frac{1}{2}$$

$$\mathbb{B} \cos \frac{\pi}{8}$$

$$\bigcirc \frac{1}{8}$$

$$\bigcirc \frac{1+\sqrt{2}}{2\sqrt{2}}$$

52. If
$$|z| \ge 3$$
, the least value of $\left|z + \frac{1}{z}\right|$ is

©
$$\frac{10}{3}$$

none of these

53. The minimum value of
$$f(x) = |3 - x| + 7$$
 is

(A) 0

© 7

® 8

54. If
$$^{m+n}P_2 = 90$$
 and $^{m-n}P_2 = 30$, then m and n is

(A) m = 8, n = 2

B m = 8, n = 3

© m = 6, n = 2

① m = 6, n = 3

			[10]	
55.	How many diffe	erent words can be fo	ormed with the letters o	f the word "MATHEMATICS"
		® 11!	© $\frac{11!}{2!}$	
56.	If the coefficien	nts of r^{th} and $(2r + 5)^{\dagger}$	th terms of the expansio	on of $(1+x)^{15}$ are equal, then

57. The fifth term of a G.P. is its middle term and its value is 2. Then the product of all the terms of this progression is

(A) 512

B 1024

© 256

(D) 32

Assertion Reason based Questions (58-59):

Directions: In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

58. Assertion (A): If ${}^{35}C_{n+7} = {}^{35}C_{4n-2}$ then n = 3, 6.

Reason(R): ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y \text{ or } x + y = n.$

A a

B b

© c

© d

59. Assertion: (A): The solution set of the equation $\frac{x-1}{x-2} > 2$ is (2, 3)

Reason (R): $\frac{a}{b} < 0$ if $(a < 0, b > 0) \cup (a > 0, b < 0)$

A a

B b

© c

© d

Case Study Based Questions (60-62):

Number of terms in the expansion of

$$(a_1 + a_2 + a_3 + ... + a_k)^n = \frac{(n+1)(n+2)...(n+k-1)}{|k-1|} = n+k-1 C_{k-1}, n \in \mathbb{N}$$

Number of terms in the expansion of

$$(x+a)^{n} + (x-a)^{n} = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} + 1 & \text{if } n \text{ is even} \end{cases}$$

Number of terms in the expansion of

$$(x+a)^n - (x-a)^n = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

- **60.** Number of terms in the expansion of $(a + b + c + d)^{13}$ is
 - **A** 455

B 560

© 680

- **②** 720
- **61.** Number of terms in the expansion of $(x + a)^{56} + (x a)^{56}$ is
 - **(A)** 26

B 27

© 28

- **(D)** 29
- **62.** Number of terms in the expansion of $(x + a)^{56} (x a)^{56}$ is
 - **A** 26

D 29

- \bigcirc 16 cot α
- **63.** $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha =$ (a) $\tan \alpha$ (b) $\cot \alpha$ (c) $\cot 16\alpha$ **64.** If z = x iy and $z^{1/3} = p + iq$, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{(p^2 + q^2)}$ is equal to
 - A) 1

© 2

- \bigcirc -2
- **65.** If the first and the n^{th} terms of a GP are a and b respectively and if P is the product of the first n terms, then P^2 is equal to
 - \triangle ab

(B) 4

- \bigcirc $(ab)^n$
- None of these
- **66.** If $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 4, 6\}$, $C = \{3, 4, 6\}$ then $(A \cup B) \cap C$ is
 - **(A)** {3, 4, 6}
- **(B)** {1, 2, 3}
- © {1, 4, 3}
- None of these

- **67.** Range of the function $f(x) = 9 7 \sin x$ is
 - **(2, 16)**
- **B** [2, 16]
- © [-1, 1]
- **(2, 16)**
- **68.** If $\sin A + \sin B = a$ and $\cos A + \cos B = b$, then $\cos(A + B)$ is equal to
 - $\triangle \frac{a^2+b^2}{12}$
- © $\frac{b^2 a^2}{a^2 + b^2}$
- a^2-b^2

		[12	']	
69.	If $(2+i)(2+2i)(2+3i)$	(2+9i) = x + iy, th	nen 5.8.13 85 =	
	(A) $x^2 + y^2$	B $x^2 - y^2$	© $(x^2 + y^2)^2$	
70.	If <i>a, b, c, d</i> are positions satisfies the relation		in that $a + b + c + d = 2$,	then $M = (a+b)(c+d)$
	(A) $0 < M \le 1$		\bigcirc 2 \leq $M \leq$ 3	None of these
71.		of $x^2 - x + p = 0$ and γ , egral values of p and q		$4x + q = 0$. If α , β , γ , δ are
	A -2, -32	® −2, 3	© -6, 3	◎ -6, -32
72.	The coefficient of x^9	in $(1 + 9x + 27x^2 + 27x^2)$	$(3)^6$ is	
	\triangle ¹⁸ C ₉ .3 ⁹		$(C^3)^6$ is $(C_{10}.3^8)$	
73.				that boys and girls are
	(A) $2(5!)^2$	B 5! × 4!	© 5! × 6!	\bigcirc 6 × 5!
74.	The solution to $ 3x -$	-1 +1<3 is		
	(A) $2 < x < 3/4$	B $-1/3 < x < 1$	© $-1/3 < x < 1/4$	① $-3 < x < 3$
75.	The real part of (1 -	$\cos\theta + 2i\sin\theta$) ⁻¹ is		
			$\bigcirc \frac{1}{3-5\cos\theta}$	
		Biolo	pay	
		· O /AIDTP		
76.	Name the part of chlorophyll gets exc		electron rearrangem	ent takes place when
	A Mg atom	B Phytol chain	© Porphyrin ring	Hydrocarbon
77.	_		of the organelles	
		oxisome, mitochondri	a	
	Peroxisome, chlo	-		
	© Peroxisome, mito			
	D Vacuole, peroxiso			
78.	In CAM plants, CO ₂ which is stored in th		es in the night and is f	ixed to form malic acid,

© Vacuole

B 400 nm and 700 nm

② 350 nm and 680 nm

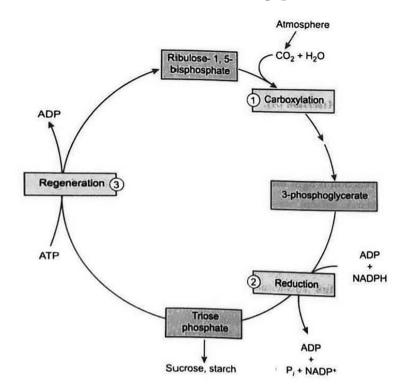
Mitochondria

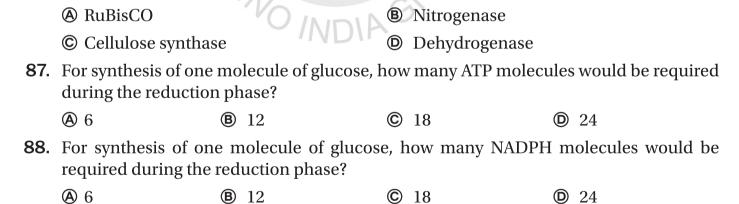
B Chloroplast

79. Light between which wavelengths is most effective for photosynthesis?

A Cytoplasm

(A) 300 nm and 500 nm


© 600 nm and 700 nm


		[-0	1			
80.	In CAM plants, stor	nata remain				
	Open in the night	t ® Open during day	© Open for 24 hrs.	© Closed for 24 hrs.		
81.	· · · · · · · · · · · · · · · · · · ·	of light falling on le nomenon occurs in th	_	a point, chlorophyll is		
	♠ CO₂ and is called	l photooxidation	$oldsymbol{\mathbb{B}}$ O_2 and is called p	hotorespiration		
	© O ₂ and is called p	ohotooxidation	© CO ₂ and is called	photorespiration		
82.	Among various nu because	trients, nitrogen has	a direct relationship	p with photosynthesis		
	It is a basic constituent of chlorophyll					
	It is a basic const	ituent of all enzymes i	nvolved in carbon rea	actions		
	© It is an essential e	element				
	D Both A and B					
83.	Which light range is	least effective in phot	osynthesis?			
	A Blue	B Green	© Red	O Violet		
Asse	Assertion-Reason type Questions (84–85):					
Dire	Directions: Read the following questions and choose any one of the following four responses.					
	A. Both Assertion a Assertion.	and Reason are true a	nd Reason is the cor	rect explanation of the		
	B. Both Assertion and Reason are true but Reason is not the correct explanation of the Assertion.					
	C. Assertion is true	but Reason is false.				
	D. Assertion is false	but Reason is true.				
84.	Assertion (A): Phot	olysis of water is assoc	ciated with PS II.			
	Reason (R): Shorter	r wavelengths of light a	are absorbed by pigm	ents of PS II		
	A A	B B	© C	D D		
85.	Assertion (A): Dark	reaction takes place o	only during night.			
	Reason (R): Dark re	eaction is light indepe	ndent.			
	A A	B B	© C	© D		

Case Study Based Questions (86-89):

3-phosphoglycerate?

Study the diagram given below and answer the following questions:

86. Which enzyme catalyzes the carboxylation of Ribulose 1, 5 - bisphosphate to

89. For synthesis of one molecule of glucose, how many ATP molecules would be required during the regeneration phase?

A 6
B 12
C 18
D 24
Chemosynthetic bacteria obtain energy from
A Sun
B Infra red rays

91. Primary meristem	is
-----------------------------	----

- Apical meristem
- **B** Intercalary meristem
- © Root apical meristem and shoot apical meristem
- (D) Both (A) and (B)

92. Water impermeable, waxy material secreted by endodermal cells in the form of Casparian strip is —

A Lignin

Suberin

© Conjunctive tissue

Pectin

93. A conjoint and open vascular bundle will be observed in the transverse section of—

- A Monocot root
- Monocot stem
- © Dicot root
- Dicot stem

94. Select the pair of flightless birds from the list given below:

- I. Corvus
- II. Columba
- III. Struthio
- IV. Aptenodytes

- (A) I & IV
- (B) | | & | | | |
- © 1&II
- © III&IV

95. Reptiles have

- Wet and glandular skin
- © Feathery skin

- Moist and spotted skin
- Dry and cornified skin

Case Study Based Questions (90):

In tropical rain forests, the canopy is thick and the shorter plants growing below it, receive filtered light. Shorter plants growing below the thick canopy are adapted to carry out the process of photosynthesis in low light intensity, which come down as filtered light. For this, the shade plants possess accessory pigments that can absorb green wavelength and then hand over the energy to chlorophyll a molecule for its photoconversion.

96. Which among the following sets, consist of only the accessory pigments?

- Chlorophyll a, chlorophyll b, carotenoids
- B Chlorophyll b, carotenoids, xanthophyll
- © Chlorophyll a, xanthophyll
- © Chlorophyll a, lycopene

97. The accessory pigments not only absorb energy and transfer it to chlorophyll a, but also protect the chlorophyll molecule from

- A Photooxidation B Photo reduction C Photo radiation
- © Both A and B

98. $2H_2O \longrightarrow 4H^+ + 4e^- + X$

X stands for

 $\bigcirc O_2$

B $2O_2$

 \bigcirc 40₂

- \bigcirc 2H₂
- **99.** The CAM plants have scotoactive stomata. This means they
 - A Have Kranz anatomy

® The stomata opens during day

- © Inverted stomatal cycle
- ① The stomata are guarded by dumbell shaped guard cells
- **100.** Which is true for C_4 plants?
 - A High productivity, but more energy expensive photosynthesis
 - B The plants are adapted to high temperature
 - © Low transpiration rate

② All of the above.

Space For Rough Works

Space For Rough Works