

Monthly Progessive Test
 Class: XII

 Subject: PCMB

 Subject: PCMB}

Solution

Physics

1. (D)

$\tan \theta=\frac{F_{e}}{m g}=\frac{r / 2}{y}=\frac{r}{2 y}$
2nd case: $\tan \theta^{\prime}=\frac{F_{e}{ }^{\prime}}{m g}=\frac{r^{\prime}}{2(y / 2)}=\frac{r^{\prime}}{y}$
$\therefore \frac{m g}{y}=\frac{2 F_{e}}{r}$

$$
\begin{equation*}
\frac{m g}{y}=\frac{F_{e}{ }^{\prime}}{r^{\prime}} \tag{1}
\end{equation*}
$$

From (1) and (2)

$$
\frac{2 F_{e}}{r}=\frac{F_{e}{ }^{\prime}}{r^{\prime}} \quad \Rightarrow \frac{2 r^{\prime}}{r}=\frac{F_{e}{ }^{\prime}}{F_{e}}=\frac{r^{2}}{r^{\prime 2}} \quad \Rightarrow 2\left(r^{\prime}\right)^{3}=r^{3} \quad \Rightarrow \sqrt[3]{2}\left(r^{\prime}\right)=r \quad \therefore r^{\prime}=\frac{r}{\sqrt[3]{2}}
$$

2. (A)
$F_{0}($ air $)=F_{m}($ medium $)$
$\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} \cdot q_{2}}{d^{2}}=\frac{1}{4 \pi\left(k \varepsilon_{0}\right)} \cdot \frac{q_{1} \cdot q_{2}}{d^{2}}$
$\Rightarrow d_{0}^{2}=k d^{2} \Rightarrow d_{0}=d \sqrt{k}$
3. (D)

$F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 Q q}{\left(d_{1}^{2}+x^{2}\right)} \cdot \sin \theta=\frac{2 Q q}{4 \pi \varepsilon_{0}} \cdot \frac{x}{\sqrt{d_{1}^{2}+x^{2}}} \cdot \frac{1}{\left(d_{1}^{2}+x^{2}\right)}$
$F=\frac{2 Q q}{4 \pi \varepsilon} \cdot \frac{x}{\left(d_{1}^{2}+x^{2}\right)^{3 / 2}}=\frac{Q q}{4 \pi \varepsilon_{0}}\left[x \cdot\left(d_{1}^{2}+x^{2}\right)^{-3 / 2}\right]$
$\frac{d F}{d x}=\frac{Q q}{2 \pi \varepsilon_{0}} \cdot\left[1 \cdot\left(d_{1}^{2}+x^{2}\right)^{-3 / 2}+x \cdot\left(\frac{-3}{2}\right)\left(d_{1}^{2}+x^{2}\right)^{-5 / 2} \cdot 2 x\right]=0$
$\Rightarrow\left(d_{1}^{2}+x^{2}\right)^{-3 / 2}=3 x^{2} \cdot \frac{\left(d_{1}^{2}+x^{2}\right)^{-3 / 2}}{\left(d_{1}^{2}+x^{2}\right)} \Rightarrow d_{1}^{2}+x^{2}=3 x^{2} \Rightarrow 2 x^{2}=d_{1}^{2}$
$\therefore x=\frac{d_{1}}{\sqrt{2}}=\frac{d}{2 \sqrt{2}}$
4. (B)

$$
\Rightarrow R=\frac{a}{2} \log \left(1-\frac{Q}{2 \pi A a}\right)^{-1}=\frac{a}{2} \cdot \log \left[\frac{1}{1-\frac{Q}{2 \pi a A}}\right]
$$

$$
\begin{aligned}
& d q=\left(4 \pi r^{2}\right)(d r)(\phi(r)) \\
& \Rightarrow d q=4 \pi r^{2} \cdot \frac{A}{r^{2}} \cdot e^{-2 r / a} d r \\
& \Rightarrow Q=4 \pi A \int_{0}^{R} e^{-2 r / a} d r \quad \Rightarrow Q=4 \pi A \cdot\left(-\frac{a}{2}\right)\left[e^{-2 r / a}\right]_{0}^{R} \\
& \Rightarrow Q=-2 \pi A a \cdot\left[e^{-2 R / a}-1\right] \quad \Rightarrow-\frac{Q}{2 \pi A a}=e^{-2 R / a}-1 \\
& \Rightarrow e^{-2 R / a}=1-\frac{Q}{2 \pi A a} \quad \Rightarrow-2 R / a=\ln \left(1-\frac{Q}{2 \pi A a}\right)
\end{aligned}
$$

5. (A)

$F_{\text {net }}=2 F \cos \theta=\frac{k q^{2} y}{\left(a^{2}+y^{2}\right)^{3 / 2}}$
$F_{\text {net }}=\frac{k q^{2} y}{a^{3}}$, where $y \ll a$
$\therefore F_{\text {net }} \propto y$
6. (B)

$$
\begin{aligned}
& F_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} \cdot q_{2}}{b^{2}} \\
& F_{2}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} \cdot q_{3}}{a^{2}}
\end{aligned}
$$

$F_{x}=F_{1}+F_{2} \sin \theta=\frac{1}{4 \pi \varepsilon_{0}} \cdot q_{1}\left[\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta\right]$
$F_{x} \propto \frac{q_{2}}{b^{2}}+\left(\frac{q_{3}}{a^{2}}\right) \sin \theta$
7. (D)
q_{1} must be positive, q_{2} must be negative and $\left|\frac{q_{1}}{q_{2}}\right|=\frac{12}{6}=2 \quad \Rightarrow\left|q_{1}\right|=2\left|q_{2}\right|$
8. (A)

$$
l=v(t) \Rightarrow t=\left(\frac{l}{v}\right)
$$

y direction: $h=\frac{1}{2} \cdot a_{y} t^{2}=\frac{1}{2} \cdot\left(\frac{q E}{m}\right) \cdot \frac{l^{2}}{v^{2}}$
$\Rightarrow \frac{2 h v^{2}}{E l^{2}}=\left(\frac{q}{m}\right)=$ charge to mass ration
9. (D)
10. (A)

$$
\begin{aligned}
& \prod^{+\sigma} \\
& W=\overrightarrow{q E} \cdot(\overrightarrow{d l})=\left(\frac{q \sigma}{2 \varepsilon_{0}}\right) a(6-3)=\frac{\sigma q \sigma a}{2 \varepsilon_{0}}
\end{aligned}
$$

12. ©

$$
\begin{aligned}
E\left(4 \pi r^{2}\right) & =\frac{\int_{0}^{r} p_{0}\left(\frac{3}{4}-\frac{r}{R}\right) \cdot 4 \pi r^{2} d r}{\varepsilon_{0}} \\
& =\frac{4 \pi p_{0}}{\varepsilon_{0}} \cdot \int_{0}^{r}\left(\frac{3}{4} \cdot r^{2}-\frac{r^{3}}{R}\right) d r \\
E \cdot 4 \pi \cdot r^{2} & =\frac{4 \pi p_{0}}{\varepsilon_{0}} \cdot\left[\frac{\not \partial}{4} \frac{r^{3}}{\not 2}-\frac{r^{4}}{4 R}\right] \\
E & =\frac{p_{0}}{\varepsilon_{0}} \cdot\left[\frac{r}{4}-\frac{r^{2}}{4 R}\right]=\frac{p_{0}}{4 \varepsilon_{0}} \cdot r \cdot\left[1-\frac{r}{R}\right]
\end{aligned}
$$

13. (B)

$$
a_{y}=\frac{e E}{m}=\frac{e}{m} \cdot \frac{8 m}{e}=8 \mathrm{~m} / \mathrm{s}^{2}
$$

x direction: $1=(2)(t) \Rightarrow t=0.5 \mathrm{~s}$
y direction :

$$
v_{y}=a_{y} \cdot t=4 \mathrm{~m} / \mathrm{s}
$$

$$
\tan \theta=\frac{V_{y}}{V_{x}}=\frac{4}{2}=2 \quad \therefore \theta=\tan ^{-1}(2)
$$

14. (A)

$$
d E=\frac{k \sigma(2 \pi r) d r \cdot z}{\left(r^{2}+z^{2}\right)^{3 / 2}}
$$

$$
E=\int_{0}^{R} d E=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right]
$$

15. (B)

Charge per unit length of rod

$$
\begin{aligned}
\lambda & =:\left(\frac{-Q}{R \cdot \frac{2 \pi}{3}}\right)=\frac{-3 Q}{2 \pi R} \\
E & =\int d E \cos \theta \\
& =\int_{-\pi / 3}^{\pi / 3} \frac{k(Q)}{\frac{2 \pi R}{3}} \times \frac{R d \theta}{R^{2}} \cos \theta=\frac{3}{2 \pi} \cdot \frac{k Q}{R} \cdot \frac{2 \sqrt{3}}{2}=\frac{3 \sqrt{3} Q}{8 \pi^{2} \varepsilon_{0} R^{2}}(+\hat{i})
\end{aligned}
$$

16. (A)

$2 T \cos \theta=W, \quad T \sin \theta=F$
$\therefore \frac{\tan \theta}{2}=\frac{F}{W} \Rightarrow F=W \frac{\tan \theta}{2}$
$\frac{q^{2}}{4 \pi \varepsilon_{0}(2 x)^{2}}=\frac{W \tan \theta}{2} \quad \therefore q=\left(\sqrt{8 W \tan \theta \pi \varepsilon_{0}}\right) x$
17. (A)

As $E \propto \frac{1}{r^{2}}$
18. (B)
19. ©

Use $E_{x}=\frac{\lambda}{4 \pi \varepsilon_{0}} \cdot \frac{1}{r} \quad E_{y}=\frac{\lambda}{4 \pi \varepsilon_{0} r} \quad \therefore \tan \theta=\frac{E_{y}}{E_{x}}=1 \quad \theta=45^{\circ}$
20. ©

We know, for a disc
$E_{x}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{x}{\sqrt{x^{2}+R^{2}}}\right]$
If $R \gg x,\left(\frac{1}{\sqrt{1+\frac{R^{2}}{x^{2}}}}\right) \rightarrow 0$
and we get, $\quad E_{x}=\frac{\sigma}{2 \varepsilon_{0}}$
21. (A)

Quarter circular ring having charge density λ, apply the concept

$$
\begin{aligned}
& \begin{array}{l}
E=\left[\frac{\lambda}{4 \pi \varepsilon_{0} R} \cdot \sqrt{2}\right] \\
E_{x}=E \cos 45^{\circ}
\end{array} \\
& E_{y}=E \sin 45^{\circ}
\end{aligned}
$$

22. (B)

Net: $\frac{\lambda}{4 \pi \varepsilon_{0} R} \uparrow \longrightarrow E_{R} \frac{\lambda}{4 \pi \varepsilon_{0} R}$

$$
E_{R}(\text { at } O)=\frac{\lambda}{4 \pi \varepsilon_{0} R} \sqrt{2}
$$

23. (D)

The force acting on this element

$$
\begin{aligned}
& d F=E d Q=\left[\frac{\lambda_{1}}{2 \pi \varepsilon_{0}}\right] \lambda_{2} d x \\
& F=\int d F=\int_{r}^{r+l} \frac{\lambda_{1} \cdot \lambda_{2}}{2 \pi \varepsilon_{0}} \cdot \frac{d x}{x}=\frac{\lambda_{1} \lambda_{2}}{2 \pi \varepsilon} \ln \left[1+\frac{l}{r}\right]=\frac{(\lambda)(2 \lambda)}{2 \pi \varepsilon_{0}} \cdot \ln \left(1+\frac{l}{r}\right)=\frac{\lambda^{2}}{\pi \varepsilon_{0}} \ln \left(1+\frac{l}{r}\right)
\end{aligned}
$$

24. (A)

No. of force per unit solid angle $=\frac{q_{1}}{4 \pi}$
\therefore Number of lines through the cone of half angle $\alpha=\frac{q_{1}}{4 \pi} \cdot 2 \pi(1-\cos \alpha)$
because the solid angle of a cone is $2 \pi(1-\cos \theta)$
where θ is the semivertical angle of a cone.
By the property of lines of force

$$
\frac{q_{1}}{4 \pi} \cdot 2 \pi(1-\cos \alpha)=\frac{q_{2}}{4 \pi} \cdot 2 \pi(1-\cos \beta)|\square| \therefore \sin \left(\frac{\beta}{2}\right)=\sin \left(\frac{\alpha}{2}\right) \sqrt{\frac{q_{1}}{q_{2}}}
$$

25. ©

$d p=(\lambda r d \theta)(2 r \cos \theta)=2 \lambda r^{2} \cos \theta d \theta$
$p=\int d p=2 \lambda r^{2} \int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta=4 \lambda r^{2}$

Chemistry

26. ©
$\mathrm{V}_{\mathrm{T}} \mathrm{S}_{\mathrm{T}}=\mathrm{V}_{1} \mathrm{~S}_{1}+\mathrm{V}_{2} \mathrm{~S}_{2}$
$\therefore(250) \mathrm{S}_{\mathrm{T}}=(200 \times 0.1)+(50 \times 0.01)$
$\therefore \mathrm{S}_{\mathrm{T}}=\frac{20.5}{250}=0.082 \mathrm{~N}$
27. (D)

As CCl_{4} is a non-polar molecule so, it cannot form strong ion-dipole interaction with ionic compounds.
28. (A)

Concentration $=\left[\frac{3.6}{180} \times \frac{1000}{200}\right]=0.1 \mathrm{~m}$
29. (C)

According to Henry's law, p $=\mathrm{k} .(\chi)=(150 \times 0.12)=18$ torr
30. (A)

At high altitude, the partial pressure of oxygen is lower than that at ground level, hence oxygen concentration becomes less in blood or tissues. Hence, people suffer from anoxia.

31. (A)

Due to strong intermolecular force between solute and solvent, the rate of escape of the components decreses. Hence, vapour pressure decreases.
32. (D)

$$
\mathrm{p}_{\text {total }}=\left[\mathrm{p}_{\mathrm{A}}^{0} \chi_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}^{0} \chi_{\mathrm{B}}\right]=\left[\frac{200 \times 2}{20}+\frac{600 \times 18}{20}\right]=560 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

33. (B)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{\mathrm{o}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{\text {solute }} \times 1000}{\mathrm{M}_{\text {solute }} \times \mathrm{W}_{\text {solvent }}}=\frac{(0.52) \times(12) \times 1000}{\mathrm{M}_{\text {solute }} \times(52)} \\
& \therefore 0.40=\frac{(0.52) \times(12) \times 1000}{\mathrm{M}_{\text {solute }} \times(52)} \\
& \therefore \mathrm{M}_{\text {solute }}=300
\end{aligned}
$$

34. (A)
$\mathrm{T}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{T}_{\mathrm{f}}=\frac{\mathrm{K}_{\mathrm{f}} \times \mathrm{W}_{\text {solute }} \times 1000}{\mathrm{M}_{\text {solute }} \times \mathrm{W}_{\text {solvent }}}=\frac{(1.86) \times(20) \times 1000}{(60) \times(250)}$
$\therefore 273-\mathrm{T}_{\mathrm{f}}=2.48$
$\therefore \mathrm{T}_{\mathrm{f}}=(273-2.48)=270.52 \mathrm{~K}$

35. (B)

Methanol does not form strong hydrogen bond with water. So, escaping character of both the components is high. Hence, it causes higher vapour pressure than expected
36. ©

Strong solute - solvent atttractive interaction is generated when sugar is added to water. Hence, higher temperature is needed for breaking the solute - solvent interaction. Thus boiling point increases
37. (D)

According to van't Hoff equation, osmotic pressure is directly proportional to temperature at a constant concentration. More the number of solute, more is the osmotic pressure of the system
38. (D)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ forms strong hydrogn bonding with water. Thus escaping character of both the components decreases. So, negetive deviation from Raoult's law is obeyed.
39. (B)

Molar mass of $\mathrm{NH}_{3}=17$ and molar mass of $\mathrm{C}_{2} \mathrm{H}_{6}=30$.
Now, NH_{3} is polar molecule can form strong hydrogen bond with water but $\mathrm{C}_{2} \mathrm{H}_{6}$ is a non-polar molecule and cannot form hydrogen bond with water.
40. (D)

According to van't Hoff law,
(i) osmotic pressure α temperature [at a constant concentration]
(ii) osmotic pressure α concentration [at a constant temperature]

So, $\pi=$ CRT
Both concentration and tempearture are intensive properties and hence product of them will be an intensive property.
41. (A)

The formula of vapour pressure of non-volatile solute is given below
$\frac{p^{0}-p}{p^{0}}=\frac{W_{\text {solute }}}{M_{\text {solute }}} \times \frac{M_{\text {solvent }}}{W_{\text {solvent }}}$
$\therefore\left(\mathrm{p}^{\mathrm{o}}-\mathrm{p}\right)=\frac{\mathrm{p}^{\mathrm{o}} \times \mathrm{W}_{\text {solute }}}{\mathrm{M}_{\text {solute }}} \times \frac{\mathrm{M}_{\text {solvent }}}{\mathrm{W}_{\text {solvent }}}$
$\therefore\left(\mathrm{p}^{\mathrm{o}}-\mathrm{p}\right)=\frac{\mathrm{Q}}{\mathrm{M}_{\text {solute }}} \quad\left[\right.$ where, $\left.\mathrm{Q}=\frac{\mathrm{p}^{\mathrm{o}} \times \mathrm{W}_{\text {solute }} \times \mathrm{M}_{\text {solvent }}}{\mathrm{W}_{\text {solvent }}}\right]$
So, according to the equation, higher the molecular weight of the solute, lower is the value of ($p^{0}-p$). Hence, vapour pressure of the solution will be higher.
42. (A)
$\chi_{\text {sugar }}=\frac{\mathrm{n}_{\text {sugar }}}{\mathrm{n}_{\text {sugar }}+\mathrm{n}_{\text {water }}}=\frac{\frac{\mathrm{W}_{\text {sugar }}}{\mathrm{M}_{\text {sugar }}}}{\frac{\mathrm{W}_{\text {sugar }}}{\mathrm{M}_{\text {sugar }}}+\frac{\mathrm{W}_{\text {water }}}{\mathrm{M}_{\text {water }}}}=\frac{\frac{3.42}{342}}{\frac{3.42}{342}+\frac{180}{18}}$
$\therefore \chi_{\text {sugar }}=9.99 \times 10^{-4}$
43. (B)
$(\Delta \mathrm{p})_{\text {glucose }}=(\Delta \mathrm{p})_{\text {urea }}$
$\therefore \chi_{\text {glucose }}=\chi_{\text {urea }}$
$\therefore \frac{\mathrm{n}_{\text {glucose }}}{\mathrm{n}_{\text {water }}}=\frac{\mathrm{n}_{\text {urea }}}{\mathrm{n}_{\text {water }}}$
$\therefore \frac{\mathrm{W}_{\text {glucose }}}{50} \times \frac{18}{180}=\frac{1}{50} \times \frac{18}{60}$
$\therefore \mathrm{W}_{\text {glucose }}=3 \mathrm{gm}$
44. ©
$\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-} \quad(\mathrm{n}=3)$
$\alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$\therefore 0.75=\frac{i-1}{3-1}$
$\therefore \mathrm{i}=2.5$
$\pi=$ i.C.R.T $=\frac{2.5 \times 0.444 \times 1000 \times 0.08 \times 300}{111 \times 500}=1.62 \mathrm{~atm}$
45. (D)

Molal elevation constant of a solvent does not depend on the concentration of the solution and it depends on the boiling point and the latent heat of vaporization of the solvent.
46. (B)
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{\text {solute }} \times 1000}{\mathrm{M}_{\text {solute }} \times \mathrm{W}_{\text {solvent }}}=\frac{\mathrm{K}_{\mathrm{b}} \times(\mathrm{y}) \times(1000)}{\mathrm{M} \times(250)}=\frac{4 . \mathrm{K}_{\mathrm{b}} \cdot \mathrm{y}}{\mathrm{M}}$
47. (A)
$\operatorname{molality}(\mathrm{m})=\frac{\mathrm{W}_{\text {solute }}}{\mathrm{M}_{\text {solute }}} \times \frac{1000}{\mathrm{~W}_{\text {solvent }}}$
$\therefore \mathrm{b}=\frac{\mathrm{c}}{\mathrm{M}_{\mathrm{B}}} \times \frac{1000}{(\mathrm{a}-\mathrm{c})}$
$\therefore \mathrm{M}_{\mathrm{B}}=\frac{\mathrm{c}}{\mathrm{b}} \times \frac{1000}{(\mathrm{a}-\mathrm{c})}$
48. (D)

$$
\mathrm{m}=\frac{\left(\chi_{\mathrm{A}}\right) \times(1000)}{\left(1-\chi_{\mathrm{A}}\right) \times \mathrm{m}_{\mathrm{B}}}=\frac{(0.2) \times(1000)}{(1-0.2) \times(78)}=3.2 \mathrm{~m}
$$

49. (D)

$$
\begin{aligned}
& \pi_{1} \mathrm{~V}_{1}+\pi_{2} \mathrm{~V}_{2}=\pi_{\text {total }}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \\
\therefore & (1.2 \times 100)+(2.4 \times 300)=\pi_{\text {total }}(300+100) \\
\therefore & \pi_{\text {total }}=\frac{840}{400}=2.1 \mathrm{~atm}
\end{aligned}
$$

50. ©
$\mathrm{i}_{1} \mathrm{C}_{1}=\mathrm{C}_{2}$
$\therefore \mathrm{i}_{1}=\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\frac{0.01}{0.004}=2.5$
$\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \quad(\mathrm{n}=3)$
$\alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$\therefore \alpha=\frac{2.5-1}{3-1}$
$\therefore \alpha=0.75$
$\therefore 75 \%$ dissociated

Mathematics

51. (B)

$$
\cos ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3} \Rightarrow \frac{\pi}{2}-\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3} \Rightarrow \sin ^{-1} y-\sin ^{-1} x=\frac{\pi}{6}
$$

52. ©

$$
\sin ^{-1} \frac{x}{5}+\operatorname{cosec}^{-1} \frac{5}{4}=\frac{\pi}{2} \Rightarrow \sin ^{-1} \frac{x}{5}+\sin ^{-1} \frac{4}{5}=\frac{\pi}{2} \Rightarrow \sin ^{-1} \frac{x}{5}=\cos ^{-1} \frac{4}{5}
$$

$$
\Rightarrow \sin ^{-1} \frac{x}{5}=\sin ^{-1} \frac{3}{5} \Rightarrow x=3
$$

53. ©

Let $\tan ^{-1} 1=x \cdot \tan ^{-1} 2=y, \tan ^{-1} 3=z \Rightarrow \tan x=1, \tan y=2, \tan z=3$
$\tan (x+y+z)=\frac{\tan x+\tan y+\tan z-\tan x \tan y \tan z}{1-\tan x \tan y-\tan y \tan z-\tan x \tan z}=\frac{1+2+3-1 \times 2 \times 3}{1-1 \times 2-2 \times 3-1 \times 3}=0$
$\Rightarrow x+y+z=\pi \Rightarrow \tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
54. ©

$$
\cos ^{-1}\left(-\sin \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\sin \frac{\pi}{6}\right)=\cos ^{-1}\left(\cos \frac{\pi}{3}\right)=\frac{\pi}{3}
$$

55. ©
56. (B)

$$
\begin{aligned}
& \cot ^{-1}(3)+\operatorname{cosec}^{-1} \sqrt{5}=\tan ^{-1} \frac{1}{3}+\sin ^{-1} \frac{1}{\sqrt{5}}=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{2} \tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)=\tan ^{-1} 1=\frac{\pi}{4} \\
& \text { (B) }
\end{aligned}
$$

Surjective
57. (A)

If $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \forall x_{1}, x_{2} \in A$, then the function is one-one
58. (D)

It is not reflexive because aRa is not true
It is not symmetric because $(2,3) \in R$ but $(3,2) \notin R$
It is not transitive because $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$
59. (B)
$f(x)=\sqrt{(x-1)(3-x)} \Rightarrow y^{2}=(x-1)(3-x) \Rightarrow(x-2)^{2}+y^{2}=1$ which represents a circle having centre at $(2,0)$ and radius $=1$
So, range $=[0,1]$
60. (A)
$f(x)=\log \left(x^{2}+\sqrt{x^{2}+1}\right) \Rightarrow f(-x)=\log \left(x^{2}+\sqrt{x^{2}+1}\right)=f(x) \Rightarrow f(x)$ is even function
61. (A)
$n(E)=4, n(F)=2$
Number of onto functions $=2^{4}-{ }^{2} C_{1}(2-1)^{4}=16-2=14$
62. ©
$m(A)=n$ and $f: A \rightarrow A$. So, number of bijective functions $=n!$
63. ©
$f(x)=x+5$. It is one-one function
Co-domain $=\{6,7,8\}$ and Range $=\{6,7,8\}$
It is onto function. So, it is one-one onto function
64. (D)
$f(x)=5 x^{2}+2 \forall x \in R$
$f(1)=5 \times 1+2=7$ and $f(-1)=5+2=7$. So, it is many one function.
Range set is subset of Codomain set. So, it is into function
65. ©

$$
\begin{aligned}
& f(x)+2 f(1-x)=\mathrm{x}^{2}+2 \\
& f(1-x)+2 f(x)=(1-x)^{2}+2 \Rightarrow 2 f(1-x)+4 f(x)=2(1-x)^{2}+4 \\
& 3 f(x)=\left(2+2 \mathrm{x}^{2}-4 x+4\right)-\left(x^{2}+2\right)=\mathrm{x}^{2}-4 x+4=(x-2)^{2} \\
& f(x)=\frac{(x-2)^{2}}{3}
\end{aligned}
$$

66. (A)

$$
-1 \leq \log _{3}\left(\frac{x}{3}\right) \leq 1 \Rightarrow 3^{-1} \leq \frac{x}{3} \leq 3^{1} \Rightarrow 1 \leq x \leq 9
$$

67. (B)
$\forall a \in R, a\langle a$ is not true. So, not reflexive
For $a, b \in R, a\langle b$ does not imply $b\langle a$. So, not symmetric
For $a, b, c \in R, a\langle b$ and $b\langle c \Rightarrow a\langle c$. So, transitive.
68. ©

A triangle is congruent to itself. So, reflexive
For two triangles A and B, A is congruent to B means B is congruent A. So, symmetric.

For three triangles A, B and C, A is congruent B and B is congruent C implies A is congruent to C.
So, transitive.
Hence, equivalence
69. (D)

Maximum number of equivalence relations on $A=\{1,2,3\}=5$
70. (A)

Reflexive but not symmetric
71. ©
$n(A) 5$ and $n(B)=6 \quad n(B) \neq n(A)$.
So, number of bijective functions $=0$
72. ©

$$
f(x)=\frac{4^{x}}{4^{x}+2}, f(1-x)=\frac{4^{1-x}}{4^{1-x}+2}=\frac{2}{4^{x}+2}
$$

$f(x)+f(1-x)=1$
$f\left(\frac{1}{2025}\right)+f\left(\frac{2}{2025}\right)+f\left(\frac{3}{2025}\right)+\ldots \ldots . .+f\left(\frac{2023}{2025}\right)+f\left(\frac{2024}{2025}\right)$

$$
=1+1+1+\ldots \ldots . .1012 \text { times }=1012
$$

73. (A)

$$
\cos \left\{\tan ^{-1}\left(\tan \frac{15 \pi}{4}\right)\right\}=\cos \left\{\tan ^{-1}(-1)\right\}=\cos \left(-\frac{\pi}{4}\right)=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

74. (D)

$$
\tan \left\{2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right\}=\tan \left\{\tan ^{-1} \frac{5}{12}-\frac{\pi}{4}\right\}=\frac{\frac{5}{12}-1}{1+\frac{5}{12}}=\frac{-7}{17}
$$

75. (A)

$$
\sin ^{-1}\left[\cos \left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]=\sin ^{-1}\left[\cos \frac{\pi}{3}\right]=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

Biology

76. (D)

Triple fusion
77. ©

Malacophily
78. (A)

Endosperm
79. (A)

Promote cross pollination
80. (A)

Dithecous with four microsporangia

81. (B)

Porogamy
82. ©

Embryo sac
83. (D)

Pollen grain- male gamete
84. (B)

Viola
85. ©

A-Degenerating synergids; B-PEN;C-Degenerating antipodals; D-PEC
86. (D)

They turn to seed coats
87. ©

Cotyledon of monocot seeds
88. (B)

Male gamete(n) + Female gamete(n) \rightarrow Zygote (2n)
89. ©

The flowers are called cleistogamous and show self pollination
90. (A)

Water hyacinth
91. (B)

Pectocellular
92. (B)

Perisperm
93. (D)

Parthenium
94. (A)

Sporopollenin
95. (A)

8-nucleate and 7-celled
96. (B)

2-celled stage
97. ©

Prevent self pollination
98. ©

Apomixis is a kind of asexual reproduction which mimics sexual reproduction
99. (D)

Parthenocarpy
100. ©

Sporogenous tissue \rightarrow Pollen mother cell \rightarrow Microspore tetrad \rightarrow Pollen grain \rightarrow Male gamete

